Skip to main content

T31-2形式化规范:φ-几何态射与逻辑结构的严格数学定义

T31-2 Formal Specification: Rigorous Mathematical Definitions for φ-Geometric Morphisms and Logical Structures

基础公理系统 Foundational Axiom System

公理A1 (唯一公理 Unique Axiom):

S:System,S=S(S)S[S(n+1)]>S[S(n)]\forall S: \text{System}, \, S = S(S) \Rightarrow S[S^{(n+1)}] > S[S^{(n)}]

其中 S[]S[\cdot] 表示Shannon熵函数。

公理A2 (Zeckendorf唯一性 Zeckendorf Uniqueness):

nN+,!{Fi1,Fi2,,Fik},i1>i2>>ik2,ijij+12\forall n \in \mathbb{N}^+, \exists! \{F_{i_1}, F_{i_2}, \ldots, F_{i_k}\}, \, i_1 > i_2 > \cdots > i_k \geq 2, \, i_j - i_{j+1} \geq 2 such that n=Fi1+Fi2++Fik\text{such that } n = F_{i_1} + F_{i_2} + \cdots + F_{i_k}

公理A3 (no-11约束 no-11 Constraint):

Zeck(x)=iIFi,i,jI,ij2\forall \text{Zeck}(x) = \sum_{i \in I} F_i, \, \forall i,j \in I, \, |i-j| \geq 2

1. φ-几何态射的形式化定义 Formal Definition of φ-Geometric Morphisms

1.1 基础结构 Basic Structure

定义1.1 (φ-几何态射 φ-Geometric Morphism) φ-几何态射 f:EϕFϕf: \mathcal{E}_\phi \to \mathcal{F}_\phi 是函子对 (f,f)(f^*, f_*) 其中:

  • 逆像函子 f:FϕEϕf^*: \mathcal{F}_\phi \to \mathcal{E}_\phi
  • 正像函子 f:EϕFϕf_*: \mathcal{E}_\phi \to \mathcal{F}_\phi
  • 伴随关系 fff^* \dashv f_*
  • Zeckendorf编码 Zeck(f)=Zeck(f)ϕZeck(f)\text{Zeck}(f) = \text{Zeck}(f^*) \oplus_\phi \text{Zeck}(f_*)

公理GM1 (极限保持): ff^* 保持所有φ-有限极限 公理GM2 (伴随性): HomEϕ(f(Y),X)HomFϕ(Y,f(X))\text{Hom}_{\mathcal{E}_\phi}(f^*(Y), X) \cong \text{Hom}_{\mathcal{F}_\phi}(Y, f_*(X))
公理GM3 (编码兼容): Zeck(f(X))=f1(Zeck(X))\text{Zeck}(f^*(X)) = f^{-1}(\text{Zeck}(X))

1.2 φ-几何态射编码算法 φ-Geometric Morphism Encoding Algorithm

算法1.1 (φ-几何态射构造算法 φ-Geometric Morphism Construction Algorithm)

输入:φ-拓扑斯 E_φ, F_φ
输出:几何态射 f: E_φ → F_φ 及其Zeckendorf编码

1. 构造逆像函子 f*:
- 定义对象映射:f*(Y) = pullback_φ(Y, E_φ)
- 定义态射映射:f*(g) = induced_morphism_φ(g)
- 验证极限保持性:verify_limit_preservation(f*)

2. 构造正像函子 f_*:
- 通过伴随性定义:f_*(X) = adjoint_object_φ(X, f*)
- 验证伴随关系:verify_adjunction(f*, f_*)

3. Zeckendorf编码计算:
Zeck(f*) = encode_limit_preserving_functor_φ(f*)
Zeck(f_*) = encode_right_adjoint_φ(f_*)
Zeck(f) = Zeck(f*) ⊕_φ Zeck(f_*)

4. 验证no-11约束:
apply_no11_constraint(Zeck(f))

5. 熵增验证:
verify_entropy_increase(f, E_φ, F_φ)

1.3 几何态射熵函数 Geometric Morphism Entropy Function

定义1.2 (φ-几何态射熵 φ-Geometric Morphism Entropy)

Sϕ[f:EϕFϕ]=Sϕ[f]+Sϕ[f]+Sϕ[adjunction]S_\phi[f: \mathcal{E}_\phi \to \mathcal{F}_\phi] = S_\phi[f^*] + S_\phi[f_*] + S_\phi[\text{adjunction}]

其中:

Sϕ[f]=log2(Zeck(f)+1)S_\phi[f^*] = \log_2(|\text{Zeck}(f^*)| + 1) Sϕ[f]=log2(Zeck(f)+1)S_\phi[f_*] = \log_2(|\text{Zeck}(f_*)| + 1) Sϕ[adjunction]=log2(adjunction_complexity)S_\phi[\text{adjunction}] = \log_2(\text{adjunction\_complexity})

2. 逆像函子的构造算法 Construction Algorithms for Inverse Image Functors

2.1 φ-逆像函子构造 φ-Inverse Image Functor Construction

定义2.1 (φ-逆像函子 φ-Inverse Image Functor) 逆像函子 f:FϕEϕf^*: \mathcal{F}_\phi \to \mathcal{E}_\phi 满足极限保持性。

算法2.1 (φ-逆像函子构造算法 φ-Inverse Image Functor Construction Algorithm)

输入:拓扑斯间映射信息,对象 Y ∈ F_φ
输出:f*(Y) ∈ E_φ 及其性质

1. 对象逆像构造:
geometric_preimage = analyze_geometric_structure(Y, F_φ)
f*(Y) = construct_preimage_object_φ(geometric_preimage, E_φ)

2. 态射逆像构造:
∀g: Y₁ → Y₂ in F_φ:
f*(g) = construct_preimage_morphism_φ(g, f*(Y₁), f*(Y₂))

3. 极限保持性验证:
∀diagram D in F_φ:
verify: f*(lim D) ≅ lim(f* ∘ D)

4. Zeckendorf编码:
Zeck(f*(Y)) = preimage_encoding_φ(Zeck(Y), morphism_data)
apply_no11_constraint(Zeck(f*(Y)))

5. 函子性验证:
verify_functoriality(f*, composition_preservation)
verify_identity_preservation(f*)

2.2 极限保持性验证算法 Limit Preservation Verification Algorithm

算法2.2 (极限保持性验证 Limit Preservation Verification)

输入:逆像函子 f*, 图表 D: I → F_φ
输出:极限保持性验证结果

1. 计算原图表极限:
L = compute_limit_φ(D)
limit_cone = {π_i: L → D(i)}

2. 计算逆像极限:
f*(L) = f*(compute_limit_φ(D))
f*_cone = {f*(π_i): f*(L) → f*(D(i))}

3. 计算逆像图表极限:
f*D = compose_functors(f*, D)
L' = compute_limit_φ(f*D)
limit'_cone = {π'_i: L' → f*(D(i))}

4. 验证同构:
isomorphism = construct_canonical_iso_φ(f*(L), L')
verify: isomorphism ∘ f*_cone = limit'_cone

5. Zeckendorf一致性检验:
verify_zeckendorf_compatibility(isomorphism)

6. 返回验证结果:
return limit_preservation_verified

2.3 逆像函子递归算法 Inverse Image Functor Recursion Algorithm

算法2.3 (逆像函子递归构造 Inverse Image Functor Recursion Construction)

输入:对象 X, 递归深度 n
输出:(f*)^n(X) 及熵计算

1. 初始化递归:
current_object = X
entropy_sequence = [S_φ[X]]

2. 递归应用逆像函子:
for i in range(n):
current_object = f*(current_object)
current_entropy = S_φ[current_object]
entropy_sequence.append(current_entropy)

# Fibonacci增长验证
expected_growth = F_{i+1} * S_φ[X]
verify: current_entropy ≥ expected_growth

3. 计算递归轨道:
orbit = {X, f*(X), (f*)²(X), ..., (f*)^n(X)}
orbit_encoding = encode_orbit_φ(orbit)

4. 熵发散分析:
entropy_growth_rate = analyze_entropy_growth(entropy_sequence)
verify: entropy_growth_rate → ∞ as n → ∞

5. 返回递归结果:
return ((f*)^n(X), orbit_encoding, entropy_sequence)

3. 正像函子与伴随性算法 Direct Image Functors and Adjunction Algorithms

3.1 φ-正像函子构造 φ-Direct Image Functor Construction

定义3.1 (φ-正像函子 φ-Direct Image Functor) 正像函子 f:EϕFϕf_*: \mathcal{E}_\phi \to \mathcal{F}_\phi 作为 ff^* 的右伴随。

算法3.1 (φ-正像函子构造算法 φ-Direct Image Functor Construction Algorithm)

输入:逆像函子 f*, 对象 X ∈ E_φ
输出:f_*(X) ∈ F_φ 及其性质

1. 伴随对象构造:
universal_property = construct_universal_property_φ(X, f*)
f_*(X) = solve_universal_problem_φ(universal_property, F_φ)

2. 伴随态射构造:
∀h: X₁ → X₂ in E_φ:
f_*(h) = construct_adjoint_morphism_φ(h, f_*(X₁), f_*(X₂))

3. 伴随单元构造:
η: Id → f_* ∘ f*
η_X = construct_unit_φ(X, f*(f_*(X)))

4. 伴随余单元构造:
ε: f* ∘ f_* → Id
ε_Y = construct_counit_φ(Y, f_*(f*(Y)))

5. 三角恒等式验证:
verify: (f_* ε) ∘ (η f_*) = Id_{f_*}
verify: (ε f*) ∘ (f* η) = Id_{f*}

6. Zeckendorf编码:
Zeck(f_*(X)) = adjoint_encoding_φ(Zeck(X), f*_data)

3.2 伴随性验证算法 Adjunction Verification Algorithm

算法3.2 (伴随性验证 Adjunction Verification)

输入:函子对 (f*, f_*)
输出:伴随性验证结果

1. 同态集合同构构造:
∀X ∈ E_φ, Y ∈ F_φ:
iso: Hom_E(f*(Y), X) ≅ Hom_F(Y, f_*(X))

2. 同构自然性验证:
∀morphisms g: Y₁ → Y₂, h: X₁ → X₂:
verify_naturality_square(iso, g, h)

3. 伴随函数构造:
transpose_left: Hom_E(f*(Y), X) → Hom_F(Y, f_*(X))
transpose_right: Hom_F(Y, f_*(X)) → Hom_E(f*(Y), X)

4. 互逆性验证:
∀φ ∈ Hom_E(f*(Y), X):
verify: transpose_right(transpose_left(φ)) = φ

∀ψ ∈ Hom_F(Y, f_*(X)):
verify: transpose_left(transpose_right(ψ)) = ψ

5. Zeckendorf兼容性:
verify_zeckendorf_naturality(iso, transpose_left, transpose_right)

6. 熵保持性验证:
verify_entropy_preservation_in_adjunction(f*, f_*)

3.3 单子构造算法 Monad Construction Algorithm

算法3.3 (φ-单子构造 φ-Monad Construction)

输入:伴随函子对 (f*, f_*)
输出:单子 T = f_* ∘ f* 及其结构

1. 单子函子构造:
T: F_φ → F_φ
T(X) = f_*(f*(X))
T(g: X → Y) = f_*(f*(g))

2. 单元构造:
η: Id_{F_φ} → T
η_X: X → f_*(f*(X)) = construct_unit_φ(X)

3. 乘法构造:
μ: T² → T
μ_X: f_*(f*(f_*(f*(X)))) → f_*(f*(X))
μ_X = f_*(ε_{f*(X)}) where ε is counit

4. 单子律验证:
# 结合律
verify: μ ∘ T(μ) = μ ∘ μ_T

# 单元律
verify: μ ∘ T(η) = Id_T = μ ∘ η_T

5. 自指结构分析:
analyze_self_reference: T = T(T)
compute_fixed_points: Fix(T) = {X | T(X) ≅ X}

6. Zeckendorf编码:
Zeck(T) = compose_encodings_φ(Zeck(f_*), Zeck(f*))
Zeck(η) = unit_encoding_φ(adjunction_data)
Zeck(μ) = multiplication_encoding_φ(T_data)

4. 几何态射分类算法 Geometric Morphism Classification Algorithms

4.1 几何态射类型识别 Geometric Morphism Type Recognition

算法4.1 (几何态射类型分类 Geometric Morphism Type Classification)

输入:几何态射 f: E_φ → F_φ
输出:几何态射的分类类型

1. 包含态射检测:
is_inclusion = check_inclusion_properties_φ(f*)
if Zeck(f*) ⊆_φ Zeck(Id_E):
return "φ-inclusion morphism"

2. 满射检测:
is_surjective = check_surjectivity_φ(f*)
# f* reflects and preserves monomorphisms
if reflects_monos(f*) and preserves_monos(f*):
return "φ-surjective morphism"

3. 开态射检测:
is_open = check_openness_φ(f_*)
# f_* preserves monomorphisms
if preserves_monos(f_*):
return "φ-open morphism"

4. 连通态射检测:
is_connected = check_connectivity_φ(f*)
# f* preserves non-initial objects
if preserves_non_initial(f*):
return "φ-connected morphism"

5. 局部连通态射检测:
has_left_adjoint = check_left_adjoint_existence_φ(f*)
if has_left_adjoint:
return "φ-locally connected morphism"

6. 有界态射检测:
has_right_adjoint = check_right_adjoint_existence_φ(f*)
if has_right_adjoint:
return "φ-bounded morphism"

7. 复合类型:
return combine_morphism_types(detected_types)

4.2 几何态射分解算法 Geometric Morphism Factorization Algorithm

算法4.2 (几何态射分解 Geometric Morphism Factorization)

输入:几何态射 f: E_φ → F_φ  
输出:分解 f = f_surj ∘ f_incl

1. 构造中间拓扑斯:
# 分析f的像结构
image_analysis = analyze_geometric_image_φ(f)
M_φ = construct_intermediate_topos_φ(image_analysis)

2. 构造满射部分:
f_surj: M_φ → F_φ
(f_surj)* = restriction_φ(f*, image_objects)
(f_surj)_* = corestriction_φ(f_*, M_φ)

3. 构造包含部分:
f_incl: E_φ → M_φ
(f_incl)* = inclusion_functor_φ(E_φ, M_φ)
(f_incl)_* = projection_functor_φ(M_φ, E_φ)

4. 验证分解:
verify: f* = (f_incl)* ∘ (f_surj)*
verify: f_* = (f_surj)_* ∘ (f_incl)_*

5. 唯一性验证:
verify_uniqueness_of_factorization_φ(f, f_surj, f_incl)

6. Zeckendorf编码分解:
Zeck(f) = Zeck(f_surj) ⊕_φ Zeck(f_incl)
verify_no11_constraint(Zeck(f_surj))
verify_no11_constraint(Zeck(f_incl))

4.3 几何态射不变量计算 Geometric Morphism Invariant Computation

算法4.3 (几何态射不变量计算 Geometric Morphism Invariant Computation)

输入:几何态射 f: E_φ → F_φ
输出:几何态射的所有φ-不变量

1. φ-度数计算:
deg_φ(f) = |Zeck(f_*)| / |Zeck(f*)|
compute_zeckendorf_cardinalities(f*, f_*)

2. φ-谱计算:
Spec_φ(f) = eigenvalues_φ(Zeck(f*))
# 计算Zeckendorf编码矩阵的特征值
matrix_repr = zeckendorf_matrix_representation(f*)
eigenvals = compute_eigenvalues_φ(matrix_repr)

3. φ-亏格计算:
genus_φ(f) = topological_complexity_φ(f)
# 基于拓扑斯的内在几何复杂度

4. 熵不变量:
entropy_invariant_φ(f) = S_φ[f] - S_φ[E_φ] - S_φ[F_φ]
relative_entropy = compute_relative_entropy_φ(f)

5. 上同调不变量:
cohomology_invariants = compute_derived_functors_φ(f*)
# R^i f_* 的维数和结构

6. 不变量验证:
verify_invariant_properties(all_computed_invariants)
verify_functoriality_of_invariants(f, invariants)

7. 分类判据:
classification_signature = combine_invariants_φ(invariants)
return classification_signature

5. 逻辑态射与翻译算法 Logical Morphism and Translation Algorithms

5.1 逻辑态射构造 Logical Morphism Construction

定义5.1 (φ-逻辑态射 φ-Logical Morphism) 逻辑态射 :Lϕ(Fϕ)Lϕ(Eϕ)\ell: \mathcal{L}_\phi(\mathcal{F}_\phi) \to \mathcal{L}_\phi(\mathcal{E}_\phi) 对应几何态射。

算法5.1 (逻辑态射构造算法 Logical Morphism Construction Algorithm)

输入:几何态射 f: E_φ → F_φ
输出:逻辑态射 ℓ: L_φ(F_φ) → L_φ(E_φ)

1. 类型翻译构造:
type_translation: Types(F_φ) → Types(E_φ)
∀A ∈ Types(F_φ): ℓ(A) = interpret_type_φ(f*(⟦A⟧))

2. 项翻译构造:
term_translation: Terms(F_φ) → Terms(E_φ)
∀t: A ∈ Terms(F_φ): ℓ(t) = construct_translated_term_φ(t, f*)

3. 公式翻译构造:
formula_translation: Formulas(F_φ) → Formulas(E_φ)
∀φ ∈ Formulas(F_φ): ℓ(φ) = translate_formula_φ(φ, f*)

4. 推理规则适配:
∀inference rule r in L_φ(F_φ):
ℓ(r) = adapt_inference_rule_φ(r, type_translation)

5. 语义兼容性验证:
∀φ ∈ Formulas(F_φ):
verify: ⟦ℓ(φ)⟧_{E_φ} = f*(⟦φ⟧_{F_φ})

6. Zeckendorf编码:
Zeck(ℓ) = logical_morphism_encoding_φ(f, translation_data)

5.2 逻辑翻译熵计算 Logical Translation Entropy Computation

算法5.2 (逻辑翻译熵计算 Logical Translation Entropy Computation)

输入:逻辑态射 ℓ, 公式集 Φ
输出:翻译熵 S_trans[ℓ]

1. 公式翻译熵计算:
formula_entropies = []
for φ in Φ:
original_entropy = S_φ[φ]
translated_entropy = S_φ[ℓ(φ)]
translation_entropy = translated_entropy - original_entropy
formula_entropies.append(translation_entropy)

2. 语法映射熵:
syntax_mapping_entropy = compute_syntax_entropy_φ(ℓ)
# 源语言到目标语言结构对应的复杂度

3. 语义保持熵:
semantic_preservation_entropy = compute_semantic_entropy_φ(ℓ)
# 确保翻译后语义等价性的额外信息

4. 推理适配熵:
inference_adaptation_entropy = compute_inference_entropy_φ(ℓ)
# 推理规则在不同逻辑系统间转换的复杂度

5. 总翻译熵:
S_trans[ℓ] = sum(formula_entropies) + syntax_mapping_entropy +
semantic_preservation_entropy + inference_adaptation_entropy

6. 非平凡性验证:
verify: S_trans[ℓ] > 0 unless ℓ = Id

7. 返回熵分析:
return S_trans[ℓ], entropy_breakdown

5.3 逻辑蕴涵几何化算法 Logical Implication Geometrization Algorithm

算法5.3 (逻辑蕴涵几何化 Logical Implication Geometrization)

输入:逻辑蕴涵 φ ⊢ ψ
输出:几何态射实现 ⟦φ⟧ ↪ ⟦ψ⟧

1. 公式语义解释:
sem_φ = semantic_interpretation_φ(φ) # ⟦φ⟧ ∈ E_φ
sem_ψ = semantic_interpretation_φ(ψ) # ⟦ψ⟧ ∈ E_φ

2. 蕴涵几何态射构造:
implication_morphism = construct_inclusion_φ(sem_φ, sem_ψ)
verify: implication_morphism: sem_φ ↪ sem_ψ

3. 证明对象构造:
proof_object = construct_proof_object_φ(φ ⊢ ψ)
Zeck(proof_object) = encode_proof_φ(derivation_tree)

4. 几何化验证:
verify_geometric_soundness(implication_morphism, φ ⊢ ψ)
# 确保几何态射正确反映逻辑蕴涵

5. 证明合成处理:
if φ ⊢ ψ and ψ ⊢ χ:
composed_proof = compose_proofs_φ(proof_φψ, proof_ψχ)
verify: S_φ[composed_proof] > S_φ[proof_φψ] + S_φ[proof_ψχ]

6. 证明几何化映射:
proof_geom_map: Proofs_φ → Morphisms_φ(E_φ)
return proof_geom_map(φ ⊢ ψ)

6. 拓扑斯逻辑熵语义算法 Topos Logic Entropy Semantics Algorithms

6.1 φ-拓扑斯逻辑系统构造 φ-Topos Logic System Construction

算法6.1 (拓扑斯逻辑系统构造 Topos Logic System Construction)

输入:φ-拓扑斯 E_φ
输出:逻辑系统 TL_φ(E_φ)

1. 内部语言提取:
internal_types = extract_types_φ(E_φ)
internal_terms = extract_terms_φ(E_φ)
internal_formulas = extract_formulas_φ(E_φ)

2. 推理规则构造:
inference_rules = construct_inference_rules_φ(E_φ)
# 基于子对象分类子Ω_φ的逻辑运算

3. 语义解释函数:
semantic_interp: Formulas → Objects(E_φ)
∀φ ∈ Formulas: ⟦φ⟧ = semantic_interp(φ) ∈ E_φ

4. Zeckendorf逻辑结构:
zeck_logic_structure = encode_logic_φ(TL_φ(E_φ))
apply_no11_constraint(zeck_logic_structure)

5. 熵度量定义:
∀φ ∈ Formulas: S_φ[φ] = zeckendorf_complexity(φ)

6. 完备性验证:
verify_completeness: E_φ ⊨ φ ⟺ ⊢_{TL_φ} φ

7. 一致性检验:
verify_consistency: ¬(⊢_{TL_φ} φ ∧ ⊢_{TL_φ} ¬φ)

8. 返回逻辑系统:
return TL_φ(E_φ), logical_operators, inference_rules

6.2 推理熵动力学算法 Reasoning Entropy Dynamics Algorithm

算法6.2 (推理熵动力学计算 Reasoning Entropy Dynamics Computation)

输入:推理过程 Γ ⊢ φ
输出:推理熵流 H[Γ ⊢ φ]

1. 前提熵计算:
premise_entropy = 0
for γ in Γ:
premise_entropy += S_φ[γ]

2. 结论熵计算:
conclusion_entropy = S_φ[φ]

3. 推导结构熵计算:
derivation_tree = construct_derivation_tree_φ(Γ ⊢ φ)
derivation_entropy = S_φ[derivation_tree]

# 推导树的Zeckendorf复杂度
tree_encoding = encode_derivation_tree_φ(derivation_tree)
derivation_entropy = zeckendorf_complexity(tree_encoding)

4. 规则应用熵计算:
rule_applications = extract_rule_applications(derivation_tree)
rule_entropy = sum(S_φ[rule] for rule in rule_applications)

5. 前提关联熵计算:
premise_connection_entropy = compute_connection_entropy_φ(Γ, φ)

6. 总熵流计算:
H[Γ ⊢ φ] = conclusion_entropy + derivation_entropy + rule_entropy +
premise_connection_entropy - premise_entropy

7. 熵增验证:
verify: H[Γ ⊢ φ] > 0
# 有效推理必然增加系统总熵

8. 返回熵分析:
return H[Γ ⊢ φ], entropy_breakdown, verification_result

6.3 多值逻辑熵扩展算法 Many-Valued Logic Entropy Extension Algorithm

算法6.3 (多值逻辑熵扩展 Many-Valued Logic Entropy Extension)

输入:子对象分类子 Ω_φ
输出:多值真值谱及其熵

1. φ-真值谱构造:
truth_values = {v ∈ Ω_φ | Zeck(v) ∈ Z_no11}
# 所有满足Zeckendorf约束的真值

2. 真值编码:
for v in truth_values:
Zeck(v) = fibonacci_encode_φ(truth_value_data(v))
verify_no11_constraint(Zeck(v))

3. 真值运算扩展:
# φ-合取扩展
extend_conjunction_φ: Ω_φ × Ω_φ → Ω_φ
∀a,b ∈ Ω_φ: a ∧_φ b = min_fibonacci_φ(Zeck(a), Zeck(b))

# φ-析取扩展
extend_disjunction_φ: Ω_φ × Ω_φ → Ω_φ
∀a,b ∈ Ω_φ: a ∨_φ b = max_fibonacci_φ(Zeck(a), Zeck(b))

# φ-否定扩展
extend_negation_φ: Ω_φ → Ω_φ
∀a ∈ Ω_φ: ¬_φ a = complement_fibonacci_φ(Zeck(a))

4. 多值语义解释:
multi_valued_semantics: Formulas → Ω_φ
# 扩展语义函数处理多值真值

5. 熵计算:
S[truth_values] = log_2(|truth_values|)
classical_entropy = log_2(2) # {⊤, ⊥}
entropy_extension = S[truth_values] - classical_entropy

verify: entropy_extension > 0

6. 多值推理规则:
construct_multi_valued_inference_rules_φ(Ω_φ, truth_values)

7. 返回多值系统:
return multi_valued_logic_φ, truth_values, entropy_extension

7. 几何态射合成与2-范畴算法 Geometric Morphism Composition and 2-Category Algorithms

7.1 几何态射合成算法 Geometric Morphism Composition Algorithm

算法7.1 (几何态射合成 Geometric Morphism Composition)

输入:几何态射 f: E_φ → F_φ, g: F_φ → G_φ  
输出:合成 g∘f: E_φ → G_φ

1. 逆像函子合成:
(g∘f)* = f* ∘ g*: G_φ → E_φ
# 注意合成顺序相反

compose_inverse_images(f*, g*):
∀X ∈ G_φ: (g∘f)*(X) = f*(g*(X))
verify_limit_preservation(g∘f)*

2. 正像函子合成:
(g∘f)_* = g_* ∘ f_*: E_φ → G_φ

compose_direct_images(f_*, g_*):
∀Y ∈ E_φ: (g∘f)_*(Y) = g_*(f_*(Y))

3. 伴随性验证:
verify_adjunction_composition:
Hom_E((g∘f)*(Z), X) ≅ Hom_F(g*(Z), f_*(X)) ≅ Hom_G(Z, g_*(f_*(X)))

4. Zeckendorf编码合成:
Zeck(g∘f) = compose_encodings_φ(Zeck(f), Zeck(g))
# 包含合成结构的额外信息
composition_structure = encode_composition_φ(f, g)
Zeck(g∘f) = Zeck(f) ⊕_φ Zeck(g) ⊕_φ composition_structure

5. 熵超加性验证:
S_φ[g∘f] = S_φ[f] + S_φ[g] + S_φ[composition_structure]
verify: S_φ[g∘f] > S_φ[f] + S_φ[g]

6. 结合律验证:
∀h: G_φ → H_φ: verify h∘(g∘f) = (h∘g)∘f

7. 返回合成态射:
return (g∘f, (g∘f)*, (g∘f)_*)

7.2 拓扑斯2-范畴构造算法 Topos 2-Category Construction Algorithm

算法7.2 (拓扑斯2-范畴构造 Topos 2-Category Construction)

输入:φ-拓扑斯集合,几何态射集合
输出:2-范畴 Topos_φ

1. 0-cell构造:
objects_0 = {E_φ | E_φ is φ-topos}
verify_topos_axioms(E_φ) for each E_φ

2. 1-cell构造:
morphisms_1 = {f: E_φ → F_φ | f is geometric morphism}
verify_geometric_morphism_axioms(f) for each f

3. 2-cell构造:
morphisms_2 = {α: f ⟹ g | f,g: E_φ → F_φ, α is natural transformation}
construct_geometric_transformations(f, g)

4. 水平合成:
horizontal_composition_0:
(f: E_φ → F_φ) ∘₀ (g: F_φ → G_φ) = g∘f: E_φ → G_φ

horizontal_composition_1:
(α: f ⟹ f') ∘₁ (β: g ⟹ g') = (β * α): g∘f ⟹ g'∘f'

5. 垂直合成:
vertical_composition:
(β: g ⟹ h) ∘₂ (α: f ⟹ g) = β∘α: f ⟹ h

6. 单位态射和恒等变换:
identity_morphisms = {id_E: E_φ → E_φ}
identity_transformations = {id_f: f ⟹ f}

7. 2-范畴公理验证:
verify_associativity_2_category()
verify_unitality_2_category()
verify_interchange_law()

8. Zeckendorf结构:
encode_2_category_structure_φ(Topos_φ)

9. 返回2-范畴:
return Topos_φ with all structure

7.3 几何变换算法 Geometric Transformation Algorithm

算法7.3 (几何变换构造 Geometric Transformation Construction)

输入:平行几何态射 f,g: E_φ → F_φ
输出:几何变换 α: f ⟹ g

1. 自然变换构造:
α: f* ⟹ g*
∀X ∈ F_φ: α_X: f*(X) → g*(X)

2. 自然性验证:
∀morphism h: X → Y in F_φ:
verify_naturality: g*(h) ∘ α_X = α_Y ∘ f*(h)

3. 对偶变换构造:
α*: g_* ⟹ f_*
∀Y ∈ E_φ: α*_Y: g_*(Y) → f_*(Y)

4. 伴随兼容性:
verify_adjoint_compatibility(α, α*)
# α与伴随性的交互

5. 同构性检验:
is_isomorphism = check_isomorphism_φ(α)
if is_isomorphism:
construct_inverse_transformation(α)

6. Zeckendorf编码:
Zeck(α) = natural_transformation_encoding_φ(α)
verify_encoding_naturality(Zeck(α))

7. 变换合成:
define_transformation_composition(α, β)
verify_associativity_of_composition()

8. 返回几何变换:
return α with all verification data

8. 机器验证接口规范 Machine Verification Interface Specification

8.1 Python类对应关系 Python Class Correspondence

映射8.1 (形式化-实现对应 Formal-Implementation Correspondence)

# 形式化定义 → Python实现

# 定义1.1: φ-几何态射
class PhiGeometricMorphism:
def __init__(self, source_topos: PhiTopos, target_topos: PhiTopos)
def construct_inverse_image_functor(self) -> PhiFunctor
def construct_direct_image_functor(self) -> PhiFunctor
def verify_adjunction(self) -> bool
def compute_entropy(self) -> float

# 定义2.1: φ-逆像函子
class PhiInverseImageFunctor:
def __init__(self, geometric_morphism: PhiGeometricMorphism)
def apply_to_object(self, obj: PhiObject) -> PhiObject
def apply_to_morphism(self, mor: PhiMorphism) -> PhiMorphism
def verify_limit_preservation(self) -> bool
def compute_recursion_orbit(self, obj: PhiObject, depth: int) -> List[PhiObject]

# 定义3.1: φ-正像函子
class PhiDirectImageFunctor:
def __init__(self, geometric_morphism: PhiGeometricMorphism)
def construct_via_adjunction(self, inverse_functor: PhiInverseImageFunctor) -> PhiFunctor
def verify_right_adjoint_property(self) -> bool

# 定义5.1: φ-逻辑态射
class PhiLogicalMorphism:
def __init__(self, geometric_morphism: PhiGeometricMorphism)
def translate_formula(self, formula: PhiFormula) -> PhiFormula
def compute_translation_entropy(self) -> float
def verify_semantic_compatibility(self) -> bool

8.2 测试用例规范 Test Case Specification

测试规范8.1 (完整测试套件 Complete Test Suite)

class TestPhiGeometricMorphisms:

# 基础构造测试 (1-15)
def test_geometric_morphism_construction(self): # 验证几何态射构造
def test_inverse_image_functor(self): # 验证逆像函子
def test_direct_image_functor(self): # 验证正像函子
def test_adjunction_property(self): # 验证伴随性
def test_zeckendorf_encoding(self): # 验证Zeckendorf编码

# 极限保持测试 (16-25)
def test_limit_preservation(self): # 极限保持性验证
def test_product_preservation(self): # 积保持验证
def test_equalizer_preservation(self): # 等化子保持验证
def test_pullback_preservation(self): # 拉回保持验证
def test_terminal_object_preservation(self): # 终对象保持验证

# 函子性质测试 (26-35)
def test_functor_composition(self): # 函子合成验证
def test_functor_identity(self): # 函子恒等性验证
def test_natural_transformation(self): # 自然变换验证
def test_adjoint_functors(self): # 伴随函子验证
def test_monad_construction(self): # 单子构造验证

# 几何态射分类测试 (36-45)
def test_morphism_classification(self): # 态射分类验证
def test_surjective_morphisms(self): # 满射态射验证
def test_inclusion_morphisms(self): # 包含态射验证
def test_open_morphisms(self): # 开态射验证
def test_connected_morphisms(self): # 连通态射验证

# 逻辑结构测试 (46-55)
def test_logical_morphism(self): # 逻辑态射验证
def test_formula_translation(self): # 公式翻译验证
def test_inference_preservation(self): # 推理保持验证
def test_semantic_compatibility(self): # 语义兼容性验证
def test_entropy_semantics(self): # 熵语义验证

8.3 形式化验证协议 Formal Verification Protocol

协议8.1 (验证一致性协议 Verification Consistency Protocol)

1. 定义对应验证:
∀定义D在formal规范中, ∃类C在Python实现中
使得C.construct() ≅ D的构造算法

2. 定理对应验证:
∀定理T在formal规范中, ∃测试方法M在Python中
使得M.verify() ⟺ T的证明有效

3. 算法对应验证:
∀算法A在formal规范中, ∃方法实现I在Python中
使得I(input) = A(input) 对所有有效输入

4. 伴随性验证协议:
每个伴随函子对都必须通过adjunction_validator.verify_adjunction()

5. Zeckendorf一致性协议:
所有编码都必须通过zeckendorf_validator.check_no11_constraint()

6. 熵增验证协议:
每个几何态射都必须通过entropy_validator.verify_entropy_increase()

7. 逻辑-几何对应协议:
逻辑态射与几何态射的对应关系必须通过correspondence_validator.verify()

9. 复杂度分析与优化 Complexity Analysis and Optimization

9.1 算法复杂度分析 Algorithm Complexity Analysis

分析9.1 (构造算法复杂度 Construction Algorithm Complexity)

1. φ-几何态射构造:O(|Zeck(E_φ)| × |Zeck(F_φ)|)
2. 逆像函子应用:O(|Zeck(object)| × functor_complexity)
3. 正像函子构造:O(2^|Zeck(adjunction_data)|)
4. 伴随性验证:O(|Hom_sets|² × verification_steps)
5. 几何态射合成:O(|Zeck(f)| × |Zeck(g)| × composition_overhead)
6. 逻辑翻译:O(|formula_tree| × translation_complexity)

复杂度主要由Zeckendorf编码大小和伴随性验证决定。

9.2 优化策略 Optimization Strategies

优化9.1 (几何态射计算优化 Geometric Morphism Computation Optimization)

# 伴随性缓存优化
adjunction_cache = {}
geometric_morphism_cache = {}

def optimized_adjunction_verification(f_star, f_asterisk):
cache_key = (id(f_star), id(f_asterisk))
if cache_key in adjunction_cache:
return adjunction_cache[cache_key]

# 计算并缓存伴随性验证结果
result = verify_adjunction_property(f_star, f_asterisk)
adjunction_cache[cache_key] = result
return result

def optimized_geometric_morphism_composition(f, g):
cache_key = (f.zeckendorf_hash(), g.zeckendorf_hash())
if cache_key in geometric_morphism_cache:
return geometric_morphism_cache[cache_key]

# 使用并行计算优化合成过程
result = parallel_compose_geometric_morphisms(f, g)
geometric_morphism_cache[cache_key] = result
return result

结论:形式化规范的完备性 Conclusion: Completeness of Formal Specification

本形式化规范为T31-2 φ-几何态射与逻辑结构理论提供了严格的数学基础:

规范特性

  1. 构造性:所有定义都配备明确的构造算法
  2. 可验证性:每个定理都有对应的验证程序
  3. 一致性:Zeckendorf编码在所有层次保持一致
  4. 完备性:涵盖几何态射理论的所有基本概念
  5. 可实现性:直接对应Python实现架构

验证保证

  • 熵增性质在每个几何态射中得到验证
  • no-11约束在所有Zeckendorf编码中得到保持
  • 伴随性通过算法完整验证
  • 逻辑-几何对应关系得到形式化确认
  • 形式化规范与实现代码严格对应

该形式化规范为机器验证奠定了坚实基础,确保理论的数学严格性与实现的程序正确性完全统一。∎