T26-5 形式化规范:φ-傅里叶变换理论
形式化陈述
定理T26-5 (φ-傅里叶变换理论的形式化规范)
设为φ-傅里叶变换系统三元组,其中:
- :Zeckendorf编码的φ-基底函数空间
- :φ-傅里叶正变换
- :φ-傅里叶逆变换
则存在完备的变换对:
满足Zeckendorf编码的无11约束和φ-Parseval等式。
核心数据结构规范
结构26-5-1:PhiFunction(φ-函数)
定义:
@dataclass
class PhiFunction:
"""φ-基底函数,所有数据使用Zeckendorf编码"""
fibonacci_samples: Dict[int, List[int]] # {Fib_index: Zeckendorf_encoding}
phi_weights: Dict[int, List[int]] # {index: phi^(-n/2) in Zeckendorf}
no11_constraint: bool = True # 强制无11约束
def __post_init__(self):
if not self.verify_no11_constraint():
raise ValueError("违反Zeckendorf无11约束")
不变量:
- 所有Fibonacci索引必须唯一且有序
- 所有数值必须使用Zeckendorf编码表示
- 权重必须满足φ-递归关系
- 严格禁止连续11模式
结构26-5-2:PhiSpectrum(φ-频谱)
定义:
@dataclass
class PhiSpectrum:
"""φ-傅里叶变换的频域表示"""
frequency_samples: Dict[int, List[int]] # {freq_index: Zeckendorf_encoding}
spectrum_values: Dict[int, complex] # 复数谱值
phi_modulation: Dict[int, List[int]] # φ-调制因子
energy_conservation: bool = True # Parseval等式验证
核心算法规范
算法26-5-1:Fibonacci完备采样生成器
输入:
max_n
: int - 最大Fibonacci索引zeckendorf_precision
: float - Zeckendorf编码精度
输出:
fibonacci_points
: List[Tuple[int, List[int]]] - (索引, Zeckendorf编码)对completeness_verified
: bool - 完备性验证结果
def generate_fibonacci_sampling(
max_n: int,
zeckendorf_precision: float = 1e-15
) -> Tuple[List[Tuple[int, List[int]]], bool]:
"""
生成满足完备性的Fibonacci采样点集
确保所有点使用Zeckendorf编码且满足无11约束
"""
# 第一步:生成Fibonacci数列
fibonacci_sequence = []
fib_a, fib_b = 1, 2 # 从F_1=1, F_2=2开始
for n in range(max_n):
if n == 0:
fibonacci_sequence.append((n, [1])) # F_0 = 1的Zeckendorf表示
elif n == 1:
fibonacci_sequence.append((n, [1, 0])) # F_1 = 2的Zeckendorf表示
else:
# 计算F_n并转换为Zeckendorf编码
fib_value = fib_a + fib_b
zeckendorf_rep = zeckendorf_encode(fib_value)
# 验证无11约束
if not verify_no11_constraint(zeckendorf_rep):
continue # 跳过违反约束的点
fibonacci_sequence.append((n, zeckendorf_rep))
fib_a, fib_b = fib_b, fib_value
# 第二步:验证完备性
completeness_verified = verify_fibonacci_completeness(
fibonacci_sequence, zeckendorf_precision
)
return fibonacci_sequence, completeness_verified
def verify_fibonacci_completeness(
fibonacci_points: List[Tuple[int, List[int]]],
precision: float
) -> bool:
"""验证Fibonacci采样的完备性"""
# 计算密度:lim_{N→∞} #{F_n : F_n ≤ N} / log_φ(N) = 1
phi = (1 + math.sqrt(5)) / 2
for threshold in [100, 1000, 10000]:
count = sum(1 for n, zeck_rep in fibonacci_points
if zeckendorf_decode(zeck_rep) <= threshold)
expected_density = math.log(threshold) / math.log(phi)
if abs(count / expected_density - 1) > precision:
return False
return True
算法26-5-2:φ-傅里叶正变换
输入:
phi_function
: PhiFunction - 输入的φ-函数frequency_range
: Tuple[float, float] - 频率范围sampling_precision
: float - 采样精度
输出:
phi_spectrum
: PhiSpectrum - φ-频谱transform_error
: float - 变换误差parseval_verified
: bool - Parseval等式验证
def phi_fourier_transform_forward(
phi_function: PhiFunction,
frequency_range: Tuple[float, float],
sampling_precision: float = 1e-12
) -> Tuple[PhiSpectrum, float, bool]:
"""
φ-傅里叶正变换算法
计算: F_φ[f](ω) = Σ_n f(F_n) · exp(-iφωF_n) · φ^(-n/2)
"""
phi = (1 + math.sqrt(5)) / 2
omega_min, omega_max = frequency_range
# 第一步:初始化频域采样
frequency_samples = {}
spectrum_values = {}
phi_modulation = {}
# 第二步:对每个频率计算变换
omega_step = 2 * math.pi / (omega_max - omega_min) / 1000 # 密集采样
for omega_idx, omega in enumerate(np.arange(omega_min, omega_max, omega_step)):
spectrum_sum = complex(0, 0)
# 对每个Fibonacci采样点求和
for fib_idx, zeckendorf_encoding in phi_function.fibonacci_samples.items():
# 解码Fibonacci值
fib_value = zeckendorf_decode(zeckendorf_encoding)
# 获取函数值f(F_n)
if fib_idx in phi_function.phi_weights:
func_value_zeck = phi_function.phi_weights[fib_idx]
func_value = zeckendorf_decode_complex(func_value_zeck)
else:
func_value = 0
# 计算指数核:exp(-iφωF_n)
phase = -phi * omega * fib_value
exponential_kernel = cmath.exp(1j * phase)
# 计算φ权重:φ^(-n/2)
phi_weight = phi ** (-fib_idx / 2)
# 累加到频谱
spectrum_sum += func_value * exponential_kernel * phi_weight
# 存储频谱值(转换为Zeckendorf编码)
frequency_samples[omega_idx] = zeckendorf_encode_float(omega)
spectrum_values[omega_idx] = spectrum_sum
phi_modulation[omega_idx] = zeckendorf_encode_float(phi_weight)
# 第三步:构建PhiSpectrum对象
phi_spectrum = PhiSpectrum(
frequency_samples=frequency_samples,
spectrum_values=spectrum_values,
phi_modulation=phi_modulation
)
# 第四步:验证变换精度
transform_error = compute_transform_error(phi_function, phi_spectrum)
# 第五步:验证Parseval等式
parseval_verified = verify_parseval_equation(phi_function, phi_spectrum)
return phi_spectrum, transform_error, parseval_verified
def compute_transform_error(
phi_function: PhiFunction,
phi_spectrum: PhiSpectrum
) -> float:
"""计算变换数值误差"""
# 通过逆变换检验
reconstructed = phi_fourier_transform_inverse(phi_spectrum, (-100, 100))
total_error = 0.0
for fib_idx in phi_function.fibonacci_samples:
original_val = phi_function.phi_weights.get(fib_idx, [0])
reconstructed_val = reconstructed.phi_weights.get(fib_idx, [0])
orig_float = zeckendorf_decode_complex(original_val)
recon_float = zeckendorf_decode_complex(reconstructed_val)
total_error += abs(orig_float - recon_float) ** 2
return math.sqrt(total_error)
算法26-5-3:φ-傅里叶逆变换
输入:
phi_spectrum
: PhiSpectrum - 输入的φ-频谱time_range
: Tuple[float, float] - 时间范围
输出:
phi_function
: PhiFunction - 重构的φ-函数reconstruction_error
: float - 重构误差
def phi_fourier_transform_inverse(
phi_spectrum: PhiSpectrum,
time_range: Tuple[float, float],
reconstruction_precision: float = 1e-12
) -> Tuple[PhiFunction, float]:
"""
φ-傅里叶逆变换算法
计算: F_φ^(-1)[F](t) = (1/2π√φ) ∫ F(ω)·exp(iφωt) dω
"""
phi = (1 + math.sqrt(5)) / 2
t_min, t_max = time_range
# 第一步:生成Fibonacci时间采样点
fibonacci_points, _ = generate_fibonacci_sampling(50) # 前50个Fibonacci数
fibonacci_samples = {}
phi_weights = {}
# 第二步:对每个Fibonacci时间点计算逆变换
for fib_idx, fib_zeckendorf in fibonacci_points:
fib_time = zeckendorf_decode(fib_zeckendorf)
if not (t_min <= fib_time <= t_max):
continue
# 积分计算:∫ F(ω)·exp(iφωt) dω
integral_result = complex(0, 0)
for omega_idx, omega_zeck in phi_spectrum.frequency_samples.items():
omega = zeckendorf_decode_float(omega_zeck)
spectrum_value = phi_spectrum.spectrum_values[omega_idx]
# 计算指数核:exp(iφωt)
phase = phi * omega * fib_time
exponential_kernel = cmath.exp(1j * phase)
integral_result += spectrum_value * exponential_kernel
# 应用归一化因子:1/(2π√φ)
normalization = 1.0 / (2 * math.pi * math.sqrt(phi))
function_value = integral_result * normalization
# 存储结果(转换为Zeckendorf编码)
fibonacci_samples[fib_idx] = fib_zeckendorf
phi_weights[fib_idx] = zeckendorf_encode_complex(function_value)
# 第三步:构建PhiFunction对象
phi_function = PhiFunction(
fibonacci_samples=fibonacci_samples,
phi_weights=phi_weights
)
# 第四步:计算重构误差
reconstruction_error = 0.0 # 由调用方通过正变换对比计算
return phi_function, reconstruction_error
算法26-5-4:φ-FFT快速算法
输入:
phi_function
: PhiFunction - 输入φ-函数fft_size
: int - FFT尺寸(必须是Fibonacci数)
输出:
phi_spectrum
: PhiSpectrum - 快速计算的φ-频谱complexity_verified
: bool - 复杂度O(N log_φ N)验证
def phi_fft_fast_algorithm(
phi_function: PhiFunction,
fft_size: int
) -> Tuple[PhiSpectrum, bool]:
"""
φ-快速傅里叶变换算法
复杂度:O(N log_φ N)
"""
phi = (1 + math.sqrt(5)) / 2
# 第一步:验证FFT尺寸是Fibonacci数
if not is_fibonacci_number(fft_size):
raise ValueError(f"FFT尺寸{fft_size}必须是Fibonacci数")
# 第二步:初始化FFT数据结构
fft_data = initialize_phi_fft_data(phi_function, fft_size)
# 第三步:递归FFT计算
complexity_counter = [0] # 用于复杂度计算
spectrum_result = phi_fft_recursive(fft_data, complexity_counter)
# 第四步:验证复杂度
theoretical_complexity = fft_size * math.log(fft_size) / math.log(phi)
complexity_verified = (complexity_counter[0] <= 2 * theoretical_complexity)
# 第五步:转换为PhiSpectrum格式
phi_spectrum = convert_fft_result_to_spectrum(spectrum_result, fft_size)
return phi_spectrum, complexity_verified
def phi_fft_recursive(
fft_data: List[complex],
complexity_counter: List[int]
) -> List[complex]:
"""φ-FFT的递归核心算法"""
n = len(fft_data)
complexity_counter[0] += n # 记录操作次数
if n <= 2:
return fft_data # 基础情况
phi = (1 + math.sqrt(5)) / 2
# 第一步:Fibonacci分组
# 将数据按Fibonacci递归关系分组:F_{n+1} = F_n + F_{n-1}
group_sizes = fibonacci_factorize(n)
groups = partition_data_by_fibonacci(fft_data, group_sizes)
# 第二步:递归计算子变换
sub_transforms = []
for group in groups:
sub_transform = phi_fft_recursive(group, complexity_counter)
sub_transforms.append(sub_transform)
# 第三步:φ-蝶形运算合并
# 使用φ-旋转因子:W_φ = exp(-2πi/(φ log φ))
w_phi = cmath.exp(-2j * math.pi / (phi * math.log(phi)))
result = []
for k in range(n):
result_k = complex(0, 0)
for group_idx, sub_transform in enumerate(sub_transforms):
if k < len(sub_transform):
# φ-蝶形运算
phi_factor = phi ** (-group_idx)
rotation = w_phi ** (k * group_idx)
result_k += phi_factor * rotation * sub_transform[k % len(sub_transform)]
result.append(result_k)
return result
def fibonacci_factorize(n: int) -> List[int]:
"""将n分解为Fibonacci数之和(Zeckendorf表示)"""
zeckendorf_encoder = ZeckendorfEncoder()
zeckendorf_rep = zeckendorf_encoder.to_zeckendorf(n)
# 转换为Fibonacci索引列表
fibonacci_indices = []
for i, bit in enumerate(reversed(zeckendorf_rep)):
if bit == 1:
fibonacci_indices.append(i + 1) # Fibonacci索引从1开始
# 转换为实际的Fibonacci数值
group_sizes = []
for idx in fibonacci_indices:
group_sizes.append(zeckendorf_encoder.get_fibonacci(idx))
return group_sizes
算法26-5-5:φ-Parseval等式验证
输入:
phi_function
: PhiFunction - 时域函数phi_spectrum
: PhiSpectrum - 对应频域函数
输出:
parseval_verified
: bool - Parseval等式验证结果energy_ratio
: float - 时域/频域能量比verification_precision
: float - 验证精度
def verify_phi_parseval_equation(
phi_function: PhiFunction,
phi_spectrum: PhiSpectrum,
verification_precision: float = 1e-10
) -> Tuple[bool, float, float]:
"""
验证φ-Parseval等式:||f||_φ² = ||F_φ[f]||_φ²
"""
phi = (1 + math.sqrt(5)) / 2
# 第一步:计算时域能量
time_domain_energy = 0.0
for fib_idx, weight_zeck in phi_function.phi_weights.items():
weight_value = zeckendorf_decode_complex(weight_zeck)
phi_factor = phi ** (-fib_idx / 2) # φ^(-n/2)权重,与变换定义一致
time_domain_energy += abs(weight_value) ** 2 * phi_factor
# 第二步:计算频域能量
frequency_domain_energy = 0.0
omega_step = 2 * math.pi / len(phi_spectrum.frequency_samples)
for omega_idx, spectrum_value in phi_spectrum.spectrum_values.items():
frequency_domain_energy += abs(spectrum_value) ** 2 * omega_step * math.sqrt(phi)
# 归一化因子
frequency_domain_energy /= (2 * math.pi)
# 第三步:计算能量比和验证
if time_domain_energy > 0:
energy_ratio = frequency_domain_energy / time_domain_energy
parseval_verified = abs(energy_ratio - 1.0) < verification_precision
else:
energy_ratio = 0.0
parseval_verified = frequency_domain_energy < verification_precision
return parseval_verified, energy_ratio, verification_precision
验证函数规范
验证26-5-1:无11约束检查
def verify_no11_constraint_phi_function(phi_func: PhiFunction) -> bool:
"""验证PhiFunction的所有组件满足无11约束"""
# 检查Fibonacci采样编码
for fib_idx, zeck_encoding in phi_func.fibonacci_samples.items():
if not verify_no11_constraint(zeck_encoding):
return False
# 检查权重编码
for weight_idx, weight_encoding in phi_func.phi_weights.items():
if isinstance(weight_encoding, list):
if not verify_no11_constraint(weight_encoding):
return False
return True
def verify_no11_constraint(encoding: List[int]) -> bool:
"""检查Zeckendorf编码是否满足无连续11约束"""
for i in range(len(encoding) - 1):
if encoding[i] == 1 and encoding[i + 1] == 1:
return False
return True
验证26-5-2:φ-正交性验证
def verify_phi_orthogonality(
kernel1_freq: float,
kernel2_freq: float,
fibonacci_points: List[int],
precision: float = 1e-12
) -> bool:
"""验证φ-傅里叶核的正交性"""
phi = (1 + math.sqrt(5)) / 2
if abs(kernel1_freq - kernel2_freq) < 2 * math.pi / (phi * math.log(phi)):
return True # 频率太接近,正交性不适用
inner_product = complex(0, 0)
for n, fib_value in enumerate(fibonacci_points):
phase_diff = phi * (kernel1_freq - kernel2_freq) * fib_value
exponential = cmath.exp(1j * phase_diff)
weight = phi ** (-n)
inner_product += exponential * weight
return abs(inner_product) < precision
验证26-5-3:φ-完备性验证
def verify_phi_completeness(
phi_function: PhiFunction,
reconstruction_precision: float = 1e-10
) -> bool:
"""验证φ-傅里叶变换的完备性(可逆性)"""
# 正变换
spectrum, _, _ = phi_fourier_transform_forward(
phi_function,
(-10, 10),
reconstruction_precision
)
# 逆变换
reconstructed, recon_error = phi_fourier_transform_inverse(
spectrum,
(-100, 100),
reconstruction_precision
)
# 比较原始和重构
total_error = 0.0
for fib_idx in phi_function.fibonacci_samples:
if fib_idx in reconstructed.phi_weights:
orig_val = zeckendorf_decode_complex(phi_function.phi_weights[fib_idx])
recon_val = zeckendorf_decode_complex(reconstructed.phi_weights[fib_idx])
total_error += abs(orig_val - recon_val) ** 2
return total_error < reconstruction_precision
辅助函数规范
def zeckendorf_encode_float(value: float) -> List[int]:
"""将浮点数转换为Zeckendorf编码(通过有理逼近)"""
# 实现浮点数的Zeckendorf编码
pass
def zeckendorf_decode_float(encoding: List[int]) -> float:
"""从Zeckendorf编码解码浮点数"""
# 实现Zeckendorf到浮点数的解码
pass
def zeckendorf_encode_complex(value: complex) -> List[int]:
"""将复数转换为Zeckendorf编码(实部+虚部)"""
# 分别编码实部和虚部
pass
def zeckendorf_decode_complex(encoding: List[int]) -> complex:
"""从Zeckendorf编码解码复数"""
# 分别解码实部和虚部
pass
def is_fibonacci_number(n: int) -> bool:
"""检查数字是否为Fibonacci数"""
# 实现Fibonacci数检查
pass
性能要求
- φ-FFT复杂度:严格保证复杂度
- Zeckendorf编码效率:所有编码转换在时间内完成
- 精度要求:数值计算精度不低于
- 内存使用:Fibonacci采样数据结构内存使用
- 无11约束:所有算法步骤都必须维持无11约束,违反约束立即终止
错误处理
- 违反无11约束:抛出
ZeckendorfConstraintError
异常 - Parseval验证失败:抛出
EnergyConservationError
异常 - 复杂度验证失败:抛出
AlgorithmComplexityError
异常 - 精度不足:抛出
NumericalPrecisionError
异常
所有错误都必须提供详细的错误上下文和修复建议。