T26-1 瓶颈张力积累定理 - 形式化规范
依赖关系
- 前置: A1 (唯一公理:自指完备系统必然熵增)
- 前置: C7-4 (木桶原理系统瓶颈推论)
- 前置: D1-3 (no-11约束)
- 前置: D1-8 (φ-表示系统)
形式化系统定义
基础结构
Definition F26.1.1 (Zeckendorf System with Bottleneck Tension):
ZeckendorfBottleneckSystem := ⟨S, C, H, T, Ω, ≺⟩
where:
S := {s₁, s₂, ..., sₙ} is the set of system components
C := {C₁, C₂, ..., Cₙ} are the component capacities
H := {H₁, H₂, ..., Hₙ} are the component entropy levels
T := {T₁, T₂, ..., Tₙ} are the component tensions
Ω := {Ω₁, Ω₂, ..., Ωₙ} are the self-reference coefficients
≺ is the partial order on components
Definition F26.1.2 (Zeckendorf Component Encoding):
∀i ∈ [1,n]: sᵢ = Σⱼ∈Kᵢ Fⱼ
where:
Kᵢ ⊆ ℕ is the index set for component i
∀j,k ∈ Kᵢ: |j-k| ≥ 2 (no-11 constraint)
Fⱼ is the j-th Fibonacci number
张力计算算法
Algorithm F26.1.1 (Tension Computation):
def compute_component_tension(
component_id: int,
H_actual: float,
H_required: float,
capacity: float,
omega: float
) -> float:
"""
Compute tension for a component in Zeckendorf system
Args:
component_id: Component identifier
H_actual: Current entropy level of component
H_required: Required entropy level for system evolution
capacity: Zeckendorf-encoded entropy capacity
omega: Self-reference coefficient
Returns:
Component tension T_i(t)
"""
# Core tension formula from T26-1
entropy_deficit = H_required - H_actual
normalized_deficit = entropy_deficit / capacity
tension = normalized_deficit * omega
# Ensure Zeckendorf constraints
return zeckendorf_quantize(tension)
def zeckendorf_quantize(value: float) -> float:
"""Quantize value to nearest Zeckendorf-representable number"""
if value <= 0:
return 0
# Find best Fibonacci combination without consecutive terms
phi = (1 + math.sqrt(5)) / 2
fibonacci_cache = generate_fibonacci_cache(int(math.log(value * math.sqrt(5))/math.log(phi)) + 5)
best_sum = 0
used_indices = set()
remaining = value
# Greedy algorithm with no-11 constraint
for i in range(len(fibonacci_cache) - 1, -1, -1):
if fibonacci_cache[i] <= remaining and (i+1) not in used_indices and (i-1) not in used_indices:
best_sum += fibonacci_cache[i]
used_indices.add(i)
remaining -= fibonacci_cache[i]
return best_sum
Algorithm F26.1.2 (Self-Reference Coefficient):
def compute_self_reference_coefficient(
component_id: int,
connection_matrix: np.ndarray,
component_state: int,
max_fibonacci: int
) -> float:
"""
Compute self-reference coefficient Ω_i(t)
Args:
component_id: Component identifier
connection_matrix: Adjacency matrix of component connections
component_state: Current Zeckendorf-encoded state
max_fibonacci: Maximum Fibonacci number in component encoding
Returns:
Self-reference coefficient Ω_i(t)
"""
n_self_connections = connection_matrix[component_id, component_id]
n_total_connections = np.sum(connection_matrix[component_id, :])
if n_total_connections == 0:
return 0
connection_ratio = n_self_connections / n_total_connections
state_factor = math.log2(1 + component_state / max_fibonacci)
return connection_ratio * state_factor
瓶颈识别算法
Algorithm F26.1.3 (Bottleneck Identification):
def identify_bottleneck_component(
entropy_levels: List[float],
capacities: List[float]
) -> int:
"""
Identify the bottleneck component with highest saturation
Args:
entropy_levels: Current entropy levels H_i(t)
capacities: Component capacities C_i
Returns:
Index of bottleneck component j*
"""
saturations = [H / C for H, C in zip(entropy_levels, capacities)]
return int(np.argmax(saturations))
张力不均匀性验证算法
Algorithm F26.1.4 (Tension Inequality Verification):
def verify_tension_inequality(
tensions: List[float],
bottleneck_id: int,
phi: float = (1 + math.sqrt(5)) / 2
) -> Tuple[bool, float, float]:
"""
Verify T26-1 tension inequality theorem
Args:
tensions: List of component tensions
bottleneck_id: Index of bottleneck component
phi: Golden ratio constant
Returns:
(is_valid, bottleneck_ratio, min_ratio) where:
- is_valid: Whether T_j* >= φ * T_avg and ∃i: T_i <= T_avg/φ
- bottleneck_ratio: T_j* / T_avg
- min_ratio: min(T_i) / T_avg
"""
if len(tensions) == 0:
return False, 0, 0
avg_tension = sum(tensions) / len(tensions)
if avg_tension == 0:
return True, 0, 0 # Trivial case
bottleneck_tension = tensions[bottleneck_id]
min_tension = min(tensions)
bottleneck_ratio = bottleneck_tension / avg_tension
min_ratio = min_tension / avg_tension
# Check T_j* >= φ * T_avg
condition1 = bottleneck_ratio >= phi - 1e-10 # Small tolerance for numerical errors
# Check ∃i: T_i <= T_avg/φ
condition2 = min_ratio <= (1/phi) + 1e-10
is_valid = condition1 and condition2
return is_valid, bottleneck_ratio, min_ratio
张力动力学算法
Algorithm F26.1.5 (Tension Dynamics Evolution):
def evolve_tension_dynamics(
current_tension: float,
entropy_saturation: float, # H_j*/C_j*
accumulation_rate: float, # λ parameter
max_tension: float, # T_max = φ * log₂(φ)
dt: float,
phi: float = (1 + math.sqrt(5)) / 2
) -> float:
"""
Evolve bottleneck tension according to T26-1 dynamics
dT_j*/dt = λ * (H_j*/C_j*)^φ * (1 - T_j*/T_max)
Args:
current_tension: Current tension T_j*(t)
entropy_saturation: Saturation ratio H_j*/C_j*
accumulation_rate: Rate constant λ
max_tension: Maximum theoretical tension T_max
dt: Time step
phi: Golden ratio
Returns:
Updated tension T_j*(t + dt)
"""
if max_tension == 0:
return current_tension
saturation_term = entropy_saturation ** phi
capacity_term = 1 - (current_tension / max_tension)
dtension_dt = accumulation_rate * saturation_term * capacity_term
new_tension = current_tension + dtension_dt * dt
# Ensure tension doesn't exceed theoretical maximum
new_tension = min(new_tension, max_tension)
# Quantize to Zeckendorf representation
return zeckendorf_quantize(new_tension)
张力传播算法
Algorithm F26.1.6 (Tension Propagation):
def propagate_tension(
tensions: np.ndarray,
component_states: np.ndarray,
adjacency_matrix: np.ndarray,
dt: float,
phi: float = (1 + math.sqrt(5)) / 2
) -> np.ndarray:
"""
Propagate tension according to Zeckendorf diffusion equation
∂T_i/∂t = D_eff * Σⱼ~ᵢ [F_gcd(s_i,s_j) / √(s_i*s_j)] * (T_j - T_i)
Args:
tensions: Current tension values T_i(t)
component_states: Zeckendorf-encoded states s_i
adjacency_matrix: Component connection matrix
dt: Time step
phi: Golden ratio
Returns:
Updated tensions T_i(t + dt)
"""
n = len(tensions)
new_tensions = tensions.copy()
# Effective diffusion coefficient from T26-1
D_eff = math.log2(phi) / phi # ≈ 0.694
for i in range(n):
dtension_dt = 0
# Sum over connected components
for j in range(n):
if i != j and adjacency_matrix[i, j] > 0:
# Compute coupling coefficient
gcd_val = math.gcd(component_states[i], component_states[j])
if gcd_val == 0:
continue
# Find Fibonacci number for GCD
F_gcd = fibonacci_of_value(gcd_val)
if F_gcd == 0:
continue
# Coupling strength
coupling = F_gcd / math.sqrt(component_states[i] * component_states[j])
# Tension difference
tension_diff = tensions[j] - tensions[i]
dtension_dt += coupling * tension_diff
dtension_dt *= D_eff
new_tensions[i] += dtension_dt * dt
# Apply Zeckendorf quantization
new_tensions[i] = zeckendorf_quantize(max(0, new_tensions[i]))
return new_tensions
def fibonacci_of_value(value: int) -> int:
"""Find the largest Fibonacci number <= value"""
if value <= 0:
return 0
if value == 1:
return 1
fib_prev, fib_curr = 1, 1
while fib_curr <= value:
fib_prev, fib_curr = fib_curr, fib_prev + fib_curr
return fib_prev
形式化验证条件
不变量
Invariant I26.1.1 (Tension Non-Negativity):
∀t ≥ 0, ∀i ∈ [1,n]: T_i(t) ≥ 0
Invariant I26.1.2 (Zeckendorf Constraint):
∀i ∈ [1,n]: T_i(t) ∈ ZeckendorfRepresentable
Invariant I26.1.3 (Bottleneck Tension Dominance):
∀t ≥ 0: T_j*(t) ≥ φ * (1/n) * Σᵢ T_i(t)
where j* = argmax_i(H_i(t)/C_i)
Invariant I26.1.4 (Tension Conservation):
∀t ≥ 0: Σᵢ T_i(t) ≤ T_max_total
where T_max_total = n * φ * log₂(φ)
Invariant I26.1.5 (Entropy Increase Consistency):
∀t ≥ 0: H_system(t+1) - H_system(t) > 0 ⟹ ∃i: T_i(t) > 0
测试谓词
Predicate P26.1.1 (Tension Inequality):
def tension_inequality_holds(tensions, bottleneck_id, phi):
"""验证张力不均匀分布定理"""
avg = sum(tensions) / len(tensions)
return (tensions[bottleneck_id] >= phi * avg and
min(tensions) <= avg / phi)
Predicate P26.1.2 (Entropy Increase Consistency):
def entropy_increase_consistent(old_entropy, new_entropy, tensions):
"""验证熵增与张力的一致性"""
total_entropy_increase = sum(new_entropy) - sum(old_entropy)
return total_entropy_increase > 0 or max(tensions) > 0
Predicate P26.1.3 (Zeckendorf Validity):
def all_tensions_zeckendorf_valid(tensions):
"""验证所有张力值满足Zeckendorf约束"""
return all(is_zeckendorf_representable(t) for t in tensions)
Predicate P26.1.4 (Self-Reference Coefficient Bounds):
def omega_bounds_valid(omega_values):
"""验证自指系数的界限"""
return all(0 <= omega <= math.log2(math.sqrt(5)) for omega in omega_values)
Predicate P26.1.5 (Tension Dynamics Stability):
def dynamics_stable(old_tensions, new_tensions, max_tension):
"""验证张力动力学的稳定性"""
return all(0 <= new_t <= max_tension for new_t in new_tensions)
辅助函数
Function F26.1.1 (Generate Fibonacci Cache):
def generate_fibonacci_cache(max_index: int) -> List[int]:
"""生成Fibonacci数缓存"""
cache = [1, 2]
while len(cache) <= max_index:
cache.append(cache[-1] + cache[-2])
return cache
Function F26.1.2 (Is Zeckendorf Representable):
def is_zeckendorf_representable(value: float, tolerance: float = 1e-10) -> bool:
"""检查值是否可以用Zeckendorf表示"""
if value < 0:
return False
quantized = zeckendorf_quantize(value)
return abs(value - quantized) < tolerance
Function F26.1.3 (Compute System Entropy):
def compute_system_entropy(component_states: List[str]) -> float:
"""计算系统总熵"""
total_entropy = 0
for state in component_states:
# 计算单个组件的Zeckendorf熵
entropy = zeckendorf_entropy(state)
total_entropy += entropy
return total_entropy
def zeckendorf_entropy(state: str) -> float:
"""计算Zeckendorf状态的熵"""
if not state or state == "0":
return 0
ones = state.count('1')
length = len(state)
if ones == 0:
return 0
p = ones / length
phi = (1 + math.sqrt(5)) / 2
return -p * math.log2(p) - (1-p) * math.log2(1-p) * length * math.log2(phi)
复杂度分析
- Tension Computation: O(log n) per component
- Bottleneck Identification: O(n)
- Tension Propagation: O(n²) per time step
- Zeckendorf Quantization: O(log F_max) where F_max is largest Fibonacci number
- Self-Reference Coefficient: O(n) per component
- System Entropy Calculation: O(n * L) where L is average state length
数值稳定性
精度要求
- 所有浮点运算使用双精度
- 张力值精度: ε_tension < 10⁻¹²
- 熵计算精度: ε_entropy < 10⁻¹⁴
- 黄金比例φ使用高精度常数
误差控制
- Zeckendorf量化避免累积误差
- 张力传播使用数值稳定的扩散格式
- 动力学演化采用显式Euler方法与自适应步长
边界条件处理
- 零张力处理: 确保非负性
- 饱和张力: 限制在理论最大值内
- 空组件: 返回零张力和零熵
- 数值溢出: 使用对数空间计算
注记: 本形式化规范提供了T26-1定理的完全可执行数学模型,确保理论与实现的严格一致性。所有算法都保持Zeckendorf编码约束和φ-量化特性,严格遵循唯一公理:自指完备系统必然熵增。