Skip to main content

T22-2 φ-网络连接演化定理 - 形式化规范

依赖导入

import numpy as np
import math
from typing import List, Dict, Set, Tuple, Optional, Any
from dataclasses import dataclass
from collections import defaultdict, deque
import networkx as nx

# 从前置理论导入
from T22_1_formal import PhiNetwork, NetworkNode, NetworkEdge, FibonacciSequence
from T20_2_formal import TraceStructure
from C20_1_formal import CollapseObserver

1. 连接权重量化

1.1 φ-权重表示

class PhiWeightQuantizer:
"""φ-权重量化器"""

def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.fibonacci_cache = FibonacciSequence()
self.weight_cache = {}

def quantize(self, weight: float) -> float:
"""将权重量化为F_k/φ^d形式"""
if weight in self.weight_cache:
return self.weight_cache[weight]

best_weight = 1.0
min_error = float('inf')

# 搜索最优的F_k/φ^d表示
for k in range(1, 25): # Fibonacci索引
fib_k = self.fibonacci_cache.get(k)

for d in range(0, 15): # φ的幂
candidate = fib_k / (self.phi ** d)
error = abs(weight - candidate)

if error < min_error:
min_error = error
best_weight = candidate

# 如果已经很接近,不需要继续搜索
if error < 1e-10:
break

self.weight_cache[weight] = best_weight
return best_weight

def is_valid_weight(self, weight: float, tolerance: float = 1e-6) -> bool:
"""验证权重是否为有效的φ-表示"""
quantized = self.quantize(weight)
return abs(weight - quantized) < tolerance

def decompose_weight(self, weight: float) -> Tuple[int, int]:
"""分解权重为(k, d),使得weight ≈ F_k/φ^d"""
quantized = self.quantize(weight)

# 反向搜索分解
for k in range(1, 25):
fib_k = self.fibonacci_cache.get(k)

for d in range(0, 15):
candidate = fib_k / (self.phi ** d)

if abs(candidate - quantized) < 1e-10:
return (k, d)

return (1, 0) # 默认返回F_1/φ^0 = 1

1.2 加权网络结构

class WeightedPhiNetwork(PhiNetwork):
"""带权重的φ-网络"""

def __init__(self, n_initial: int = 3):
super().__init__(n_initial)
self.edge_weights: Dict[Tuple[int, int], float] = {}
self.weight_quantizer = PhiWeightQuantizer()

def add_weighted_edge(self, node1_id: int, node2_id: int,
weight: float = 1.0) -> bool:
"""添加带权重的边"""
if not self.add_edge(node1_id, node2_id):
return False

# 量化权重
quantized_weight = self.weight_quantizer.quantize(weight)

# 存储权重(确保键的顺序一致)
key = (min(node1_id, node2_id), max(node1_id, node2_id))
self.edge_weights[key] = quantized_weight

return True

def get_edge_weight(self, node1_id: int, node2_id: int) -> float:
"""获取边的权重"""
key = (min(node1_id, node2_id), max(node1_id, node2_id))
return self.edge_weights.get(key, 0.0)

def update_edge_weight(self, node1_id: int, node2_id: int,
new_weight: float) -> bool:
"""更新边的权重"""
key = (min(node1_id, node2_id), max(node1_id, node2_id))

if key not in self.edge_weights:
return False

# 量化新权重
quantized_weight = self.weight_quantizer.quantize(new_weight)
self.edge_weights[key] = quantized_weight

return True

2. 熵增驱动的连接演化

2.1 熵梯度计算

class EntropyGradientCalculator:
"""熵梯度计算器"""

def __init__(self, network: WeightedPhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2

def compute_connection_entropy(self, node1_id: int, node2_id: int) -> float:
"""计算连接的熵贡献"""
weight = self.network.get_edge_weight(node1_id, node2_id)

if weight <= 0:
return 0.0

# 基础权重熵
weight_entropy = -weight * math.log(weight) if weight > 0 else 0

# 结构熵贡献
node1 = self.network.nodes.get(node1_id)
node2 = self.network.nodes.get(node2_id)

if node1 and node2:
# 度数不平衡的熵惩罚
degree_diff = abs(node1.degree - node2.degree)
degree_entropy = math.log(1 + degree_diff) / self.phi

# Zeckendorf表示的复杂度
z1_length = len(node1.z_representation.representation)
z2_length = len(node2.z_representation.representation)
structure_entropy = (z1_length + z2_length) * math.log(2) / 10

return weight_entropy + degree_entropy + structure_entropy
else:
return weight_entropy

def compute_entropy_gradient(self, node1_id: int, node2_id: int) -> float:
"""计算熵对连接权重的梯度"""
current_weight = self.network.get_edge_weight(node1_id, node2_id)

# 数值梯度计算
epsilon = 1e-6

# 当前熵
current_entropy = self.compute_connection_entropy(node1_id, node2_id)

# 微扰后的熵
if current_weight > 0:
# 现有连接:计算权重变化的影响
perturbed_weight = current_weight + epsilon
# 临时更新权重计算熵
original_weight = current_weight

# 简化:直接计算解析梯度
if current_weight > 0:
gradient = -math.log(current_weight) - 1
else:
gradient = 1.0 # 鼓励新连接

else:
# 新连接:鼓励建立连接
gradient = 1.0

# 加入结构因子
node1 = self.network.nodes.get(node1_id)
node2 = self.network.nodes.get(node2_id)

if node1 and node2:
structure_factor = 1 / (1 + abs(node1.degree - node2.degree))
else:
structure_factor = 1.0

return gradient * structure_factor

2.2 连接演化动力学

class ConnectionEvolutionDynamics:
"""连接演化动力学"""

def __init__(self, network: WeightedPhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2
self.gradient_calculator = EntropyGradientCalculator(network)
self.evolution_history = []
self.connection_probabilities = {}

def initialize_probabilities(self):
"""初始化连接概率"""
node_ids = list(self.network.nodes.keys())

for i, id1 in enumerate(node_ids):
for id2 in node_ids[i+1:]:
# 基础概率与节点度数成反比
node1 = self.network.nodes[id1]
node2 = self.network.nodes[id2]

base_prob = 1 / (1 + node1.degree + node2.degree)
self.connection_probabilities[(id1, id2)] = base_prob / self.phi

def evolve_step(self, dt: float = 0.1) -> Dict[str, Any]:
"""单步演化"""
if not self.connection_probabilities:
self.initialize_probabilities()

node_ids = list(self.network.nodes.keys())
changes = {
'new_connections': 0,
'weight_updates': 0,
'entropy_increase': 0.0
}

initial_entropy = self._compute_total_entropy()

for i, id1 in enumerate(node_ids):
for id2 in node_ids[i+1:]:
key = (id1, id2)

# 计算熵梯度
gradient = self.gradient_calculator.compute_entropy_gradient(id1, id2)

# 更新连接概率
current_prob = self.connection_probabilities.get(key, 0.0)
new_prob = current_prob + (dt / self.phi) * gradient
new_prob = np.clip(new_prob, 0.0, 1.0)

self.connection_probabilities[key] = new_prob

# 决定是否建立连接或更新权重
if np.random.random() < new_prob:
current_weight = self.network.get_edge_weight(id1, id2)

if current_weight == 0:
# 建立新连接
initial_weight = np.random.exponential(1.0)
if self.network.add_weighted_edge(id1, id2, initial_weight):
changes['new_connections'] += 1
else:
# 更新现有连接的权重
weight_change = dt * gradient * current_weight / self.phi
new_weight = max(0.1, current_weight + weight_change)
if self.network.update_edge_weight(id1, id2, new_weight):
changes['weight_updates'] += 1

# 计算熵增
final_entropy = self._compute_total_entropy()
changes['entropy_increase'] = final_entropy - initial_entropy

# 记录历史
self.evolution_history.append({
'time': len(self.evolution_history),
'entropy': final_entropy,
'connections': len(self.network.edges),
'nodes': len(self.network.nodes)
})

return changes

def _compute_total_entropy(self) -> float:
"""计算网络总熵"""
total_entropy = 0.0

# 连接熵
for edge in self.network.edges:
entropy_contrib = self.gradient_calculator.compute_connection_entropy(
edge.node1.id, edge.node2.id)
total_entropy += entropy_contrib

# 结构熵
n = len(self.network.nodes)
m = len(self.network.edges)

if n > 0:
structure_entropy = math.log(1 + n) + (math.log(1 + m) if m > 0 else 0)
total_entropy += structure_entropy

# φ-系统固有熵
total_entropy += math.log(self.phi)

return total_entropy

3. 连接密度分析

3.1 密度界限验证

class ConnectionDensityAnalyzer:
"""连接密度分析器"""

def __init__(self, network: WeightedPhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2

def compute_density(self) -> float:
"""计算连接密度"""
n = len(self.network.nodes)
m = len(self.network.edges)

if n <= 1:
return 0.0

max_edges = n * (n - 1) // 2
return m / max_edges if max_edges > 0 else 0.0

def theoretical_density_bound(self) -> float:
"""理论密度上界"""
return 1 / (self.phi ** 2)

def verify_density_bound(self, tolerance: float = 0.01) -> bool:
"""验证密度不超过理论上界"""
actual_density = self.compute_density()
theoretical_bound = self.theoretical_density_bound()

return actual_density <= theoretical_bound + tolerance

def compute_local_densities(self) -> Dict[int, float]:
"""计算每个节点的局部密度"""
local_densities = {}

for node_id, node in self.network.nodes.items():
# 获取邻居节点
neighbors = self._get_neighbors(node_id)
k = len(neighbors)

if k <= 1:
local_densities[node_id] = 0.0
continue

# 计算邻居间的连接数
neighbor_connections = 0
for i, neighbor1 in enumerate(neighbors):
for neighbor2 in neighbors[i+1:]:
if self.network.get_edge_weight(neighbor1, neighbor2) > 0:
neighbor_connections += 1

# 局部密度 = 实际连接数 / 最大可能连接数
max_connections = k * (k - 1) // 2
local_densities[node_id] = neighbor_connections / max_connections if max_connections > 0 else 0.0

return local_densities

def _get_neighbors(self, node_id: int) -> List[int]:
"""获取节点的邻居"""
neighbors = []

for edge_key, weight in self.network.edge_weights.items():
if weight > 0:
id1, id2 = edge_key
if id1 == node_id:
neighbors.append(id2)
elif id2 == node_id:
neighbors.append(id1)

return neighbors

4. 小世界效应

4.1 路径长度分析

class SmallWorldAnalyzer:
"""小世界效应分析器"""

def __init__(self, network: WeightedPhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2

def compute_average_path_length(self) -> float:
"""计算平均路径长度"""
node_ids = list(self.network.nodes.keys())
n = len(node_ids)

if n <= 1:
return 0.0

total_length = 0.0
path_count = 0

# 使用BFS计算所有节点对的最短路径
for i, start_id in enumerate(node_ids):
distances = self._bfs_distances(start_id)

for j in range(i + 1, n):
end_id = node_ids[j]
if end_id in distances and distances[end_id] != float('inf'):
total_length += distances[end_id]
path_count += 1

return total_length / path_count if path_count > 0 else float('inf')

def _bfs_distances(self, start_id: int) -> Dict[int, float]:
"""从起始节点开始的BFS距离计算"""
distances = {start_id: 0.0}
queue = deque([start_id])
visited = {start_id}

while queue:
current_id = queue.popleft()
current_distance = distances[current_id]

# 获取邻居
neighbors = self._get_neighbors(current_id)

for neighbor_id in neighbors:
if neighbor_id not in visited:
visited.add(neighbor_id)
distances[neighbor_id] = current_distance + 1
queue.append(neighbor_id)

return distances

def _get_neighbors(self, node_id: int) -> List[int]:
"""获取有连接的邻居节点"""
neighbors = []

for edge_key, weight in self.network.edge_weights.items():
if weight > 0:
id1, id2 = edge_key
if id1 == node_id:
neighbors.append(id2)
elif id2 == node_id:
neighbors.append(id1)

return neighbors

def theoretical_path_length(self) -> float:
"""理论预测的路径长度"""
n = len(self.network.nodes)
if n <= 1:
return 0.0

# L ~ log_φ(N) + C
log_phi_n = math.log(n) / math.log(self.phi)

# 结构常数C的估计
density = len(self.network.edges) / (n * (n - 1) / 2) if n > 1 else 0
structure_constant = 1 / max(0.1, density) # 密度越低,常数越大

return log_phi_n + structure_constant

def verify_small_world_scaling(self, tolerance: float = 0.5) -> bool:
"""验证小世界缩放律"""
actual_length = self.compute_average_path_length()
theoretical_length = self.theoretical_path_length()

if actual_length == float('inf') or theoretical_length == float('inf'):
return False

# 允许较大的相对误差
relative_error = abs(actual_length - theoretical_length) / max(actual_length, theoretical_length)
return relative_error < tolerance

def compute_clustering_coefficient(self) -> float:
"""计算聚集系数"""
node_ids = list(self.network.nodes.keys())
total_clustering = 0.0
node_count = 0

for node_id in node_ids:
neighbors = self._get_neighbors(node_id)
k = len(neighbors)

if k < 2:
continue

# 计算邻居间的连接数
neighbor_connections = 0
for i, neighbor1 in enumerate(neighbors):
for neighbor2 in neighbors[i+1:]:
if self.network.get_edge_weight(neighbor1, neighbor2) > 0:
neighbor_connections += 1

# 局部聚集系数
max_connections = k * (k - 1) // 2
local_clustering = neighbor_connections / max_connections

total_clustering += local_clustering
node_count += 1

return total_clustering / node_count if node_count > 0 else 0.0

5. 连接稳定性

5.1 稳定性条件验证

class ConnectionStabilityAnalyzer:
"""连接稳定性分析器"""

def __init__(self, network: WeightedPhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2

def compute_stability_ratio(self, node1_id: int, node2_id: int) -> float:
"""计算连接的稳定性比率"""
# 计算正向和反向熵增
forward_entropy = self._compute_directional_entropy(node1_id, node2_id)
backward_entropy = self._compute_directional_entropy(node2_id, node1_id)

if backward_entropy == 0:
return float('inf')

return forward_entropy / backward_entropy

def _compute_directional_entropy(self, from_id: int, to_id: int) -> float:
"""计算从from_id到to_id的方向性熵增"""
from_node = self.network.nodes.get(from_id)
to_node = self.network.nodes.get(to_id)

if not from_node or not to_node:
return 0.0

# 信息从from传递到to的熵增
# 基于度数差异和Zeckendorf表示复杂度

degree_entropy = math.log(1 + to_node.degree) - math.log(1 + from_node.degree)

from_complexity = len(from_node.z_representation.representation)
to_complexity = len(to_node.z_representation.representation)

structure_entropy = (to_complexity - from_complexity) * math.log(2) / 10

return degree_entropy + structure_entropy

def verify_stability_condition(self, node1_id: int, node2_id: int,
tolerance: float = 0.1) -> bool:
"""验证连接满足稳定性条件"""
stability_ratio = self.compute_stability_ratio(node1_id, node2_id)

if stability_ratio == float('inf'):
return False

# 稳定性条件:比率应该接近φ
return abs(stability_ratio - self.phi) < tolerance * self.phi

def analyze_network_stability(self) -> Dict[str, Any]:
"""分析整个网络的稳定性"""
stable_connections = 0
unstable_connections = 0
stability_ratios = []

for edge_key in self.network.edge_weights:
id1, id2 = edge_key

if self.verify_stability_condition(id1, id2):
stable_connections += 1
else:
unstable_connections += 1

ratio = self.compute_stability_ratio(id1, id2)
if ratio != float('inf'):
stability_ratios.append(ratio)

total_connections = stable_connections + unstable_connections

return {
'stable_fraction': stable_connections / total_connections if total_connections > 0 else 0,
'mean_stability_ratio': np.mean(stability_ratios) if stability_ratios else 0,
'std_stability_ratio': np.std(stability_ratios) if stability_ratios else 0,
'total_connections': total_connections
}

注记: 本形式化规范提供了T22-2定理的完整数学实现,包括权重量化、熵增演化、密度分析、小世界效应和稳定性验证的所有必要组件。所有实现严格遵循φ-表示和熵增原理。