T22-1 φ-网络节点涌现定理 - 形式化规范
依赖导入
import numpy as np
import math
from typing import List, Dict, Set, Tuple, Optional
from dataclasses import dataclass
from collections import defaultdict
import networkx as nx
# 从前置理论导入
from T2_7_formal import PhiRepresentation
from T20_1_formal import CollapseAwareSystem
from D1_8_formal import ZeckendorfString
from L1_5_formal import FibonacciSequence
1. 网络节点定义
1.1 基础节点结构
@dataclass
class NetworkNode:
"""网络节点的φ-表示"""
def __init__(self, node_id: int):
self.id = node_id
self.z_representation = ZeckendorfString(node_id)
self.state = 0 # 节点状态
self.degree = 0 # 节点度数
self.phi = (1 + np.sqrt(5)) / 2
self.entropy = 0.0
def is_valid(self) -> bool:
"""验证节点满足no-11约束"""
return '11' not in self.z_representation.representation
def can_connect_to(self, other: 'NetworkNode') -> bool:
"""判断是否可以连接到另一节点"""
# 连接后不能违反no-11约束
combined = self.z_representation.value + other.z_representation.value
z_combined = ZeckendorfString(combined)
return '11' not in z_combined.representation
1.2 边结构
@dataclass
class NetworkEdge:
"""网络边的φ-表示"""
def __init__(self, node1: NetworkNode, node2: NetworkNode):
self.node1 = node1
self.node2 = node2
self.weight = 1.0
self.phi = (1 + np.sqrt(5)) / 2
def entropy_contribution(self) -> float:
"""计算边的熵贡献"""
# 边的熵贡献与节点状态差相关
state_diff = abs(self.node1.state - self.node2.state)
return math.log(1 + state_diff) / self.phi
2. φ-网络结构
2.1 网络类定义
class PhiNetwork:
"""φ-网络的完整实现"""
def __init__(self, n_initial: int = 3):
self.phi = (1 + np.sqrt(5)) / 2
self.nodes: Dict[int, NetworkNode] = {}
self.edges: Set[NetworkEdge] = set()
self.time = 0
self.entropy_history = []
# 初始化节点
self._initialize_nodes(n_initial)
def _initialize_nodes(self, n: int):
"""初始化n个节点"""
fib_sequence = FibonacciSequence()
for i in range(n):
# 使用Fibonacci数作为节点ID
node_id = fib_sequence.get(i + 2) # 从F_2=1开始
node = NetworkNode(node_id)
if node.is_valid():
self.nodes[node_id] = node
def add_node(self) -> NetworkNode:
"""添加新节点(熵增驱动)"""
# 找到下一个有效的Fibonacci数
max_id = max(self.nodes.keys()) if self.nodes else 1
fib_sequence = FibonacciSequence()
new_id = max_id
# 寻找下一个满足no-11的ID
while True:
new_id = fib_sequence.next_after(new_id)
node = NetworkNode(new_id)
if node.is_valid():
self.nodes[new_id] = node
return node
def add_edge(self, node1_id: int, node2_id: int) -> bool:
"""添加边(如果满足约束)"""
if node1_id not in self.nodes or node2_id not in self.nodes:
return False
node1 = self.nodes[node1_id]
node2 = self.nodes[node2_id]
if not node1.can_connect_to(node2):
return False
edge = NetworkEdge(node1, node2)
self.edges.add(edge)
# 更新度数
node1.degree += 1
node2.degree += 1
return True
2.2 熵增演化
class EntropyDrivenEvolution:
"""熵增驱动的网络演化"""
def __init__(self, network: PhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2
def evolve_step(self):
"""单步演化"""
# 计算当前熵
current_entropy = self.compute_network_entropy()
# 决定是添加节点还是边
if np.random.random() < 1 / self.phi:
self._add_node_by_entropy()
else:
self._add_edge_by_entropy()
# 验证熵增
new_entropy = self.compute_network_entropy()
entropy_increase = new_entropy - current_entropy
# 记录熵历史
self.network.entropy_history.append(new_entropy)
# 验证熵增满足理论预测
expected_increase = math.log(self.phi)
assert entropy_increase >= expected_increase * 0.9 # 允许10%误差
def _add_node_by_entropy(self):
"""根据熵增需求添加节点"""
new_node = self.network.add_node()
# 根据熵增概率连接到现有节点
for node_id, node in self.network.nodes.items():
if node_id != new_node.id:
# 计算连接的熵增
delta_s = self._compute_entropy_increase(new_node.id, node_id)
# 连接概率
p_connect = delta_s / (self.phi * self._max_entropy())
if np.random.random() < p_connect:
self.network.add_edge(new_node.id, node_id)
def _add_edge_by_entropy(self):
"""根据熵增概率添加边"""
node_ids = list(self.network.nodes.keys())
for i, id1 in enumerate(node_ids):
for id2 in node_ids[i+1:]:
# 检查是否已连接
if self._are_connected(id1, id2):
continue
# 计算熵增
delta_s = self._compute_entropy_increase(id1, id2)
# 连接概率
p_connect = delta_s / (self.phi * self._max_entropy())
if np.random.random() < p_connect:
self.network.add_edge(id1, id2)
break
def _compute_entropy_increase(self, id1: int, id2: int) -> float:
"""计算添加边的熵增"""
node1 = self.network.nodes[id1]
node2 = self.network.nodes[id2]
# 基础熵增
base_entropy = math.log(2) # 新连接的信息
# 度数贡献
degree_entropy = math.log(1 + node1.degree) + math.log(1 + node2.degree)
# Zeckendorf编码的熵贡献
z_entropy = len(node1.z_representation.representation) + \
len(node2.z_representation.representation)
return (base_entropy + degree_entropy / 10 + z_entropy / 100) / self.phi
def _max_entropy(self) -> float:
"""计算最大可能熵"""
n = len(self.network.nodes)
if n <= 1:
return 1.0
return n * math.log(n)
def _are_connected(self, id1: int, id2: int) -> bool:
"""检查两节点是否已连接"""
for edge in self.network.edges:
if (edge.node1.id == id1 and edge.node2.id == id2) or \
(edge.node1.id == id2 and edge.node2.id == id1):
return True
return False
def compute_network_entropy(self) -> float:
"""计算网络总熵"""
# 节点熵
node_entropy = sum(node.entropy for node in self.network.nodes.values())
# 边熵
edge_entropy = sum(edge.entropy_contribution() for edge in self.network.edges)
# 结构熵
n = len(self.network.nodes)
m = len(self.network.edges)
if n > 0:
structure_entropy = math.log(1 + n) + math.log(1 + m)
else:
structure_entropy = 0
# 总熵包含log(φ)项
total_entropy = node_entropy + edge_entropy + structure_entropy + math.log(self.phi)
return total_entropy
3. 度分布验证
3.1 φ-度分布类
class PhiDegreeDistribution:
"""验证网络度分布遵循φ-表示"""
def __init__(self, network: PhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2
def compute_degree_distribution(self) -> Dict[int, int]:
"""计算度分布"""
distribution = defaultdict(int)
for node in self.network.nodes.values():
distribution[node.degree] += 1
return dict(distribution)
def verify_fibonacci_clustering(self) -> bool:
"""验证度数聚集在Fibonacci数附近"""
distribution = self.compute_degree_distribution()
degrees = list(distribution.keys())
if not degrees:
return True
fib_sequence = FibonacciSequence()
fibonacci_numbers = [fib_sequence.get(i) for i in range(2, 20)]
# 检查每个度数
for degree in degrees:
# 度数必须可Zeckendorf表示
z = ZeckendorfString(degree)
if '11' in z.representation:
return False
# 检查是否接近Fibonacci数
min_distance = min(abs(degree - fib) for fib in fibonacci_numbers)
# 允许一定偏差
if min_distance > degree * 0.2: # 20%偏差
return False
return True
def compute_scaling_exponent(self) -> float:
"""计算度分布的标度指数"""
distribution = self.compute_degree_distribution()
if len(distribution) < 2:
return 0.0
# 对数-对数拟合
degrees = []
counts = []
for degree, count in distribution.items():
if degree > 0 and count > 0:
degrees.append(math.log(degree))
counts.append(math.log(count))
if len(degrees) < 2:
return 0.0
# 线性回归
n = len(degrees)
sum_x = sum(degrees)
sum_y = sum(counts)
sum_xx = sum(x*x for x in degrees)
sum_xy = sum(x*y for x, y in zip(degrees, counts))
denominator = n * sum_xx - sum_x * sum_x
if abs(denominator) < 1e-10:
return 0.0
slope = (n * sum_xy - sum_x * sum_y) / denominator
# 理论预测:标度指数应接近-φ
return -slope
4. 网络熵守恒
4.1 熵守恒验证
class NetworkEntropyConservation:
"""验证网络熵守恒定律"""
def __init__(self, network: PhiNetwork):
self.network = network
self.phi = (1 + np.sqrt(5)) / 2
def decompose_entropy(self) -> Dict[str, float]:
"""分解网络熵为各组分"""
# 节点熵
node_entropy = self._compute_node_entropy()
# 边熵
edge_entropy = self._compute_edge_entropy()
# 结构熵(log φ项)
structure_entropy = math.log(self.phi)
# 总熵
total_entropy = node_entropy + edge_entropy + structure_entropy
return {
'node_entropy': node_entropy,
'edge_entropy': edge_entropy,
'structure_entropy': structure_entropy,
'total_entropy': total_entropy
}
def _compute_node_entropy(self) -> float:
"""计算节点熵"""
entropy = 0.0
for node in self.network.nodes.values():
if node.state > 0:
entropy += math.log(node.state)
# Zeckendorf表示的熵贡献
z_length = len(node.z_representation.representation)
entropy += z_length * math.log(2) / 10
return entropy
def _compute_edge_entropy(self) -> float:
"""计算边熵"""
entropy = 0.0
# 度分布熵
degree_dist = defaultdict(int)
for node in self.network.nodes.values():
degree_dist[node.degree] += 1
total_nodes = len(self.network.nodes)
if total_nodes > 0:
for degree, count in degree_dist.items():
if count > 0:
p = count / total_nodes
entropy -= p * math.log(p)
# 边权熵
for edge in self.network.edges:
entropy += edge.entropy_contribution()
return entropy
def verify_conservation(self, tolerance: float = 0.1) -> bool:
"""验证熵守恒"""
components = self.decompose_entropy()
# 验证分解公式
expected_total = (components['node_entropy'] +
components['edge_entropy'] +
components['structure_entropy'])
actual_total = components['total_entropy']
# 检查守恒(允许数值误差)
return abs(actual_total - expected_total) < tolerance
注记: 本形式化规范提供了T22-1定理的完整数学实现,包括网络节点、边、熵增演化和度分布验证的所有必要组件。所有实现严格遵守no-11约束和Zeckendorf编码要求。