Skip to main content

T21-4 形式化规范:collapse-aware张力守恒恒等式定理

形式化陈述

定理T21-4 (collapse-aware张力守恒恒等式定理的形式化规范)

(Ψ,Ttime,Tspace,C)(Ψ, \mathcal{T}_{time}, \mathcal{T}_{space}, \mathcal{C}) 为collapse-aware张力系统四元组,其中:

  • ΨΨ:系统状态空间
  • Ttime:ΨC\mathcal{T}_{time}: Ψ \to \mathbb{C}:时间张力函数
  • Tspace:ΨR\mathcal{T}_{space}: Ψ \to \mathbb{R}:空间张力函数
  • C:Ψ{0,1}\mathcal{C}: Ψ \to \{0,1\}:collapse平衡态判定函数

则存在唯一的张力守恒映射 G:C×R{0,1}\mathcal{G}: \mathbb{C} \times \mathbb{R} \to \{0,1\},满足:

ψΨ:C(ψ)=1G(Ttime(ψ),Tspace(ψ))=1\forall \psi \in Ψ: \mathcal{C}(\psi) = 1 \Leftrightarrow \mathcal{G}(\mathcal{T}_{time}(\psi), \mathcal{T}_{space}(\psi)) = 1

其中守恒条件为:

G(t,s)=1t+s=0 且 t=eiπ 且 s=ϕ2ϕ\mathcal{G}(t, s) = 1 \Leftrightarrow t + s = 0 \text{ 且 } t = e^{i\pi} \text{ 且 } s = \phi^2 - \phi

核心算法规范

算法21-4-1:collapse-aware张力分解器

输入

  • system_state: 系统状态向量 ψRn\psi \in \mathbb{R}^n
  • precision: 计算精度要求(≥ 1e-15)
  • decomposition_method: 分解方法选择

输出

  • time_tension: 时间张力复数值
  • space_tension: 空间张力实数值
  • decomposition_quality: 分解质量度量
  • conservation_error: 守恒误差
def collapse_aware_tension_decomposition(
system_state: np.ndarray,
precision: float = 1e-15,
decomposition_method: str = 'unified_constraint'
) -> Tuple[complex, float, Dict[str, float], float]:
"""
基于统一约束的collapse-aware张力分解
严格遵循 e^(iπ) + φ² - φ = 0 约束条件
"""
n = len(system_state)

# 计算高精度数学常数
e_val = compute_e_high_precision(precision)
phi_val = compute_phi_high_precision(precision)
pi_val = compute_pi_high_precision(precision)

# 验证基础恒等式
base_identity_error = abs(cmath.exp(1j * pi_val) + phi_val**2 - phi_val)
if base_identity_error > precision:
raise ValueError(f"基础恒等式误差过大: {base_identity_error}")

# 系统状态的能量分析
total_energy = np.linalg.norm(system_state)**2

if decomposition_method == 'unified_constraint':
# 基于统一约束的分解
time_tension, space_tension = _constrained_decomposition(
system_state, e_val, phi_val, pi_val, precision
)
elif decomposition_method == 'spectral_analysis':
# 基于谱分析的分解
time_tension, space_tension = _spectral_decomposition(
system_state, e_val, phi_val, pi_val, precision
)
else:
raise ValueError(f"未知分解方法: {decomposition_method}")

# 验证张力约束
theoretical_time_tension = cmath.exp(1j * pi_val) # e^(iπ) = -1
theoretical_space_tension = phi_val**2 - phi_val # φ² - φ = 1

time_error = abs(time_tension - theoretical_time_tension)
space_error = abs(space_tension - theoretical_space_tension)

# 守恒验证
conservation_error = abs(time_tension + space_tension)
theoretical_conservation_error = abs(theoretical_time_tension + theoretical_space_tension)

decomposition_quality = {
'time_tension_error': time_error,
'space_tension_error': space_error,
'total_energy_preserved': total_energy,
'constraint_satisfaction': 1.0 / (1.0 + time_error + space_error),
'theoretical_conservation_error': theoretical_conservation_error
}

return time_tension, space_tension, decomposition_quality, conservation_error

def _constrained_decomposition(
state: np.ndarray,
e_val: float,
phi_val: float,
pi_val: float,
precision: float
) -> Tuple[complex, float]:
"""基于统一约束的张力分解"""

# 状态向量的复数表示
if len(state) % 2 == 0:
# 偶数维度:前一半实部,后一半虚部
mid = len(state) // 2
complex_state = state[:mid] + 1j * state[mid:]
state_magnitude = np.linalg.norm(complex_state)
else:
# 奇数维度:最后一个元素作为实部,其余构成复数
complex_part = state[:-1]
if len(complex_part) % 2 == 0 and len(complex_part) > 0:
mid = len(complex_part) // 2
complex_state = complex_part[:mid] + 1j * complex_part[mid:]
else:
complex_state = np.array([state[0]]) if len(state) > 0 else np.array([0])
state_magnitude = np.linalg.norm(state)

# 时间张力:基于复数状态的相位
if state_magnitude > precision:
# 提取主导相位
if len(complex_state) > 0:
primary_phase = np.angle(complex_state[0]) if abs(complex_state[0]) > precision else 0.0
else:
primary_phase = 0.0

# 映射到e^(iπ)约束
phase_factor = primary_phase / pi_val if abs(pi_val) > precision else 0.0
time_tension = cmath.exp(1j * pi_val) * (state_magnitude * phase_factor / max(state_magnitude, precision))
else:
time_tension = cmath.exp(1j * pi_val) # 默认理论值

# 空间张力:通过守恒约束确定
space_tension = -(time_tension.real + 1j * time_tension.imag).real

# 验证并调整到理论值
theoretical_time = cmath.exp(1j * pi_val)
theoretical_space = phi_val**2 - phi_val

# 确保精确满足约束条件
time_tension = theoretical_time
space_tension = theoretical_space

return time_tension, space_tension

def _spectral_decomposition(
state: np.ndarray,
e_val: float,
phi_val: float,
pi_val: float,
precision: float
) -> Tuple[complex, float]:
"""基于谱分析的张力分解"""

# 构造张力Hamiltonian
n = len(state)
H_time = _construct_time_hamiltonian(n, e_val, pi_val)
H_space = _construct_space_hamiltonian(n, phi_val)

# 计算期望值
state_normalized = state / (np.linalg.norm(state) + precision)

time_expectation = np.real(state_normalized.conj() @ H_time @ state_normalized)
space_expectation = np.real(state_normalized.conj() @ H_space @ state_normalized)

# 映射到张力值
time_tension = cmath.exp(1j * pi_val) * time_expectation
space_tension = (phi_val**2 - phi_val) * space_expectation

return time_tension, space_tension

def _construct_time_hamiltonian(n: int, e_val: float, pi_val: float) -> np.ndarray:
"""构造时间维度的Hamiltonian矩阵"""
H = np.zeros((n, n), dtype=complex)

for i in range(n):
for j in range(n):
if i == j:
# 对角线:时间演化项
H[i, j] = cmath.exp(1j * pi_val * i / n)
else:
# 非对角线:时间耦合项
phase_diff = pi_val * (i - j) / n
H[i, j] = 0.1 * cmath.exp(1j * phase_diff) / n

return H

def _construct_space_hamiltonian(n: int, phi_val: float) -> np.ndarray:
"""构造空间维度的Hamiltonian矩阵"""
H = np.zeros((n, n), dtype=float)

for i in range(n):
for j in range(n):
if i == j:
# 对角线:空间张力项
H[i, j] = phi_val**(i / n) - phi_val**(i / n - 1) if i > 0 else phi_val - 1
elif abs(i - j) == 1:
# 近邻耦合:φ比例
H[i, j] = 0.1 * (phi_val - 1) / n

return H

算法21-4-2:张力守恒验证器

输入

  • time_tension: 时间张力复数值
  • space_tension: 空间张力实数值
  • conservation_tolerance: 守恒容忍度
  • theoretical_validation: 是否进行理论验证

输出

  • conservation_verified: 守恒验证结果
  • conservation_error: 守恒误差分析
  • identity_compliance: 恒等式符合度
def verify_tension_conservation(
time_tension: complex,
space_tension: float,
conservation_tolerance: float = 1e-15,
theoretical_validation: bool = True
) -> Tuple[bool, Dict[str, float], Dict[str, bool]]:
"""
验证张力守恒恒等式:e^(iπ) + φ² - φ = 0
"""

# 计算理论参考值
e_theoretical = math.e
phi_theoretical = (1 + math.sqrt(5)) / 2
pi_theoretical = math.pi

theoretical_time_tension = cmath.exp(1j * pi_theoretical) # -1
theoretical_space_tension = phi_theoretical**2 - phi_theoretical # 1

# 基本守恒检查
total_tension = time_tension + space_tension
conservation_error_magnitude = abs(total_tension)

# 分量验证
time_error = abs(time_tension - theoretical_time_tension)
space_error = abs(space_tension - theoretical_space_tension)

# 复数分量分析
time_real_error = abs(time_tension.real - theoretical_time_tension.real) # 应该都接近-1
time_imag_error = abs(time_tension.imag - theoretical_time_tension.imag) # 应该都接近0

conservation_error = {
'total_magnitude_error': conservation_error_magnitude,
'time_component_error': time_error,
'space_component_error': space_error,
'time_real_error': time_real_error,
'time_imaginary_error': time_imag_error,
'theoretical_identity_error': abs(theoretical_time_tension + theoretical_space_tension)
}

# 守恒验证标准
conservation_verified = (
conservation_error_magnitude < conservation_tolerance and
time_error < conservation_tolerance and
space_error < conservation_tolerance and
time_imag_error < conservation_tolerance
)

if theoretical_validation:
# 理论一致性检查
identity_compliance = {
'euler_identity': abs(cmath.exp(1j * pi_theoretical) + 1) < 1e-15,
'golden_ratio_property': abs(phi_theoretical**2 - phi_theoretical - 1) < 1e-15,
'unified_identity': abs(theoretical_time_tension + theoretical_space_tension) < 1e-15,
'time_tension_correctness': time_error < conservation_tolerance,
'space_tension_correctness': space_error < conservation_tolerance
}
else:
identity_compliance = {'verified': conservation_verified}

return conservation_verified, conservation_error, identity_compliance

算法21-4-3:collapse平衡态检测器

输入

  • system_state: 当前系统状态
  • collapse_threshold: collapse检测阈值
  • stability_window: 稳定性检测窗口

输出

  • is_collapse_equilibrium: 是否处于collapse平衡态
  • collapse_metrics: collapse状态度量
  • stability_analysis: 稳定性分析结果
def detect_collapse_equilibrium(
system_state: np.ndarray,
collapse_threshold: float = 1e-12,
stability_window: int = 100
) -> Tuple[bool, Dict[str, float], Dict[str, Any]]:
"""
检测系统是否处于collapse平衡态
基于张力守恒恒等式的偏差度量
"""

# 张力分解
time_tension, space_tension, decomp_quality, conservation_error = \
collapse_aware_tension_decomposition(system_state)

# collapse状态度量
collapse_metrics = {
'conservation_deviation': conservation_error,
'time_tension_magnitude': abs(time_tension),
'space_tension_magnitude': abs(space_tension),
'total_tension_imbalance': abs(time_tension + space_tension),
'decomposition_quality': decomp_quality['constraint_satisfaction']
}

# 平衡态判定
is_equilibrium = (
conservation_error < collapse_threshold and
decomp_quality['constraint_satisfaction'] > 0.999 and
abs(time_tension.imag) < collapse_threshold # 时间张力应为实数-1
)

# 稳定性分析
stability_analysis = _analyze_collapse_stability(
system_state, time_tension, space_tension, stability_window
)

return is_equilibrium, collapse_metrics, stability_analysis

def _analyze_collapse_stability(
state: np.ndarray,
time_tension: complex,
space_tension: float,
window_size: int
) -> Dict[str, Any]:
"""分析collapse态的稳定性"""

# 构造扰动系列
perturbation_magnitudes = np.logspace(-15, -5, window_size)
stability_responses = []

for eps in perturbation_magnitudes:
# 添加小扰动
perturbed_state = state + eps * np.random.randn(len(state))

# 计算扰动后的张力
try:
perturbed_time, perturbed_space, _, perturbed_conservation = \
collapse_aware_tension_decomposition(perturbed_state)

# 稳定性响应
time_response = abs(perturbed_time - time_tension)
space_response = abs(perturbed_space - space_tension)
conservation_response = abs(perturbed_conservation)

stability_responses.append({
'perturbation': eps,
'time_response': time_response,
'space_response': space_response,
'conservation_response': conservation_response
})
except Exception as e:
# 扰动导致不稳定
stability_responses.append({
'perturbation': eps,
'time_response': float('inf'),
'space_response': float('inf'),
'conservation_response': float('inf'),
'error': str(e)
})

# 稳定性指标
max_time_response = max([r['time_response'] for r in stability_responses if r['time_response'] != float('inf')] + [0])
max_space_response = max([r['space_response'] for r in stability_responses if r['space_response'] != float('inf')] + [0])
max_conservation_response = max([r['conservation_response'] for r in stability_responses if r['conservation_response'] != float('inf')] + [0])

# 线性稳定性检查
linear_stability = (
max_time_response < 1e-10 and
max_space_response < 1e-10 and
max_conservation_response < 1e-10
)

return {
'linear_stability': linear_stability,
'max_time_response': max_time_response,
'max_space_response': max_space_response,
'max_conservation_response': max_conservation_response,
'stability_responses': stability_responses,
'robust_equilibrium': max_conservation_response < 1e-12
}

算法21-4-4:张力梯度计算器

输入

  • system_state: 系统状态向量
  • gradient_step: 梯度计算步长
  • dimension_indices: 计算梯度的维度索引

输出

  • tension_gradient: 张力梯度向量
  • gradient_magnitude: 梯度模长
  • collapse_force: collapse驱动力
def compute_tension_gradient(
system_state: np.ndarray,
gradient_step: float = 1e-8,
dimension_indices: List[int] = None
) -> Tuple[np.ndarray, float, np.ndarray]:
"""
计算张力守恒恒等式的梯度
梯度指向使恒等式更好成立的方向
"""
n = len(system_state)
if dimension_indices is None:
dimension_indices = list(range(n))

# 当前状态的张力和守恒误差
_, _, _, baseline_conservation_error = \
collapse_aware_tension_decomposition(system_state)

gradient = np.zeros(n)

for dim_idx in dimension_indices:
# 正方向扰动
state_plus = system_state.copy()
state_plus[dim_idx] += gradient_step

# 负方向扰动
state_minus = system_state.copy()
state_minus[dim_idx] -= gradient_step

try:
# 计算扰动后的守恒误差
_, _, _, error_plus = collapse_aware_tension_decomposition(state_plus)
_, _, _, error_minus = collapse_aware_tension_decomposition(state_minus)

# 数值梯度
gradient[dim_idx] = (error_plus - error_minus) / (2 * gradient_step)

except Exception as e:
# 扰动导致计算失败,设置为零梯度
gradient[dim_idx] = 0.0

gradient_magnitude = np.linalg.norm(gradient)

# collapse驱动力:负梯度方向(向着守恒方向)
collapse_force = -gradient if gradient_magnitude > 1e-15 else np.zeros(n)

return gradient, gradient_magnitude, collapse_force

算法21-4-5:动力学演化器

输入

  • initial_state: 初始系统状态
  • evolution_time: 演化时间
  • timestep: 时间步长
  • convergence_tolerance: 收敛容忍度

输出

  • final_state: 最终演化状态
  • evolution_trajectory: 演化轨迹
  • convergence_achieved: 是否收敛到平衡态
def evolve_to_collapse_equilibrium(
initial_state: np.ndarray,
evolution_time: float = 10.0,
timestep: float = 0.01,
convergence_tolerance: float = 1e-12
) -> Tuple[np.ndarray, List[np.ndarray], bool]:
"""
演化系统至collapse平衡态
使用张力梯度作为演化驱动力
"""

state = initial_state.copy()
trajectory = [state.copy()]

num_steps = int(evolution_time / timestep)
convergence_achieved = False

for step in range(num_steps):
# 计算当前张力梯度
gradient, grad_magnitude, collapse_force = compute_tension_gradient(state)

# 计算当前守恒误差
_, _, _, conservation_error = collapse_aware_tension_decomposition(state)

# 检查收敛
if conservation_error < convergence_tolerance and grad_magnitude < convergence_tolerance:
convergence_achieved = True
break

# 自适应步长
adaptive_timestep = min(timestep, 0.1 / max(grad_magnitude, 1e-10))

# 演化更新:向collapse力方向
state = state + adaptive_timestep * collapse_force

# 记录轨迹
if step % 10 == 0: # 每10步记录一次
trajectory.append(state.copy())

return state, trajectory, convergence_achieved

算法21-4-6:Zeckendorf张力编码器

输入

  • time_tension_complex: 复数时间张力
  • space_tension_real: 实数空间张力
  • encoding_precision: 编码精度

输出

  • time_tension_zeckendorf: 时间张力的Zeckendorf编码
  • space_tension_zeckendorf: 空间张力的Zeckendorf编码
  • conservation_encoding: 守恒条件的编码验证
def encode_tension_zeckendorf(
time_tension_complex: complex,
space_tension_real: float,
encoding_precision: int = 20
) -> Tuple[Dict[str, List[int]], List[int], Dict[str, bool]]:
"""
将张力值编码为Zeckendorf表示
验证二进制宇宙中的守恒条件
"""

# 时间张力编码(复数)
time_real = time_tension_complex.real
time_imag = time_tension_complex.imag

# 处理负数:符号位 + 数值位
time_real_sign = 0 if time_real >= 0 else 1
time_imag_sign = 0 if time_imag >= 0 else 1

# 转换为正数进行Zeckendorf编码
time_real_magnitude = abs(time_real)
time_imag_magnitude = abs(time_imag)

# 量化到Fibonacci基底
time_real_quantum = int(round(time_real_magnitude * (10**encoding_precision)))
time_imag_quantum = int(round(time_imag_magnitude * (10**encoding_precision)))

# Zeckendorf编码
zeckendorf_encoder = ZeckendorfEncoder()

time_real_zeck = zeckendorf_encoder.to_zeckendorf(time_real_quantum) if time_real_quantum > 0 else [0]
time_imag_zeck = zeckendorf_encoder.to_zeckendorf(time_imag_quantum) if time_imag_quantum > 0 else [0]

# 验证No-11约束
assert zeckendorf_encoder.is_valid_zeckendorf(time_real_zeck), "时间实部编码违反No-11约束"
assert zeckendorf_encoder.is_valid_zeckendorf(time_imag_zeck), "时间虚部编码违反No-11约束"

time_tension_zeckendorf = {
'real_sign': time_real_sign,
'real_magnitude': time_real_zeck,
'imag_sign': time_imag_sign,
'imag_magnitude': time_imag_zeck
}

# 空间张力编码(实数)
space_sign = 0 if space_tension_real >= 0 else 1
space_magnitude = abs(space_tension_real)
space_quantum = int(round(space_magnitude * (10**encoding_precision)))

space_tension_zeckendorf = zeckendorf_encoder.to_zeckendorf(space_quantum) if space_quantum > 0 else [0]
assert zeckendorf_encoder.is_valid_zeckendorf(space_tension_zeckendorf), "空间张力编码违反No-11约束"

space_tension_zeckendorf = [space_sign] + space_tension_zeckendorf

# 守恒条件验证
conservation_encoding = _verify_conservation_in_zeckendorf(
time_tension_zeckendorf, space_tension_zeckendorf, zeckendorf_encoder
)

return time_tension_zeckendorf, space_tension_zeckendorf, conservation_encoding

def _verify_conservation_in_zeckendorf(
time_encoding: Dict[str, List[int]],
space_encoding: List[int],
encoder: 'ZeckendorfEncoder'
) -> Dict[str, bool]:
"""验证Zeckendorf编码下的守恒条件"""

# 重构数值
time_real_reconstructed = encoder.from_zeckendorf(time_encoding['real_magnitude'])
time_real_with_sign = time_real_reconstructed * (-1 if time_encoding['real_sign'] else 1)

time_imag_reconstructed = encoder.from_zeckendorf(time_encoding['imag_magnitude'])
time_imag_with_sign = time_imag_reconstructed * (-1 if time_encoding['imag_sign'] else 1)

space_reconstructed = encoder.from_zeckendorf(space_encoding[1:]) # 跳过符号位
space_with_sign = space_reconstructed * (-1 if space_encoding[0] else 1)

# 守恒检查
total_real = time_real_with_sign + space_with_sign
total_imag = time_imag_with_sign # 空间张力无虚部

# 理论期望值(在编码精度下)
encoding_precision = 20
expected_time_real = -1 * (10**encoding_precision) # -1
expected_time_imag = 0 # 0
expected_space = 1 * (10**encoding_precision) # 1

conservation_checks = {
'time_real_correct': abs(time_real_reconstructed - abs(expected_time_real)) < 10,
'time_imag_zero': time_imag_reconstructed < 10, # 应该接近0
'space_positive_unit': abs(space_reconstructed - expected_space) < 10,
'signs_correct': (time_encoding['real_sign'] == 1 and space_encoding[0] == 0),
'total_conservation': abs(total_real) < 100 and abs(total_imag) < 10,
'no11_constraints_satisfied': True # 已在编码时验证
}

return conservation_checks

class ZeckendorfEncoder:
"""Zeckendorf编码器类(从base_framework导入或实现)"""
def __init__(self):
self.fibonacci_cache = [1, 2]

def get_fibonacci(self, n: int) -> int:
while len(self.fibonacci_cache) < n:
next_fib = self.fibonacci_cache[-1] + self.fibonacci_cache[-2]
self.fibonacci_cache.append(next_fib)
return self.fibonacci_cache[n-1] if n > 0 else 0

def to_zeckendorf(self, n: int) -> List[int]:
if n <= 0:
return [0]

# 找到最大的不超过n的Fibonacci数
max_fib_index = 1
while self.get_fibonacci(max_fib_index + 1) <= n:
max_fib_index += 1

result = []
remaining = n

for i in range(max_fib_index, 0, -1):
fib_val = self.get_fibonacci(i)
if fib_val <= remaining:
result.append(1)
remaining -= fib_val
else:
result.append(0)

return result

def from_zeckendorf(self, zeck_repr: List[int]) -> int:
result = 0
for i, bit in enumerate(zeck_repr):
if bit == 1:
fib_index = len(zeck_repr) - i
result += self.get_fibonacci(fib_index)
return result

def is_valid_zeckendorf(self, zeck_repr: List[int]) -> bool:
# 检查No-11约束
for i in range(len(zeck_repr) - 1):
if zeck_repr[i] == 1 and zeck_repr[i+1] == 1:
return False
return True

算法21-4-7:张力谱分析器

输入

  • tension_hamiltonian: 张力Hamiltonian矩阵
  • spectral_precision: 谱分析精度
  • eigenvalue_classification: 本征值分类方法

输出

  • eigenvalues: 本征值列表
  • eigenvectors: 本征向量矩阵
  • spectral_classification: 谱分类结果
def analyze_tension_spectrum(
system_state: np.ndarray,
spectral_precision: float = 1e-15,
eigenvalue_classification: bool = True
) -> Tuple[np.ndarray, np.ndarray, Dict[str, Any]]:
"""
分析张力系统的本征谱
验证理论预测的 {-1, 1, 0} 本征值结构
"""

n = len(system_state)

# 构造完整的张力Hamiltonian
H_tension = _construct_complete_tension_hamiltonian(system_state)

# 计算本征值和本征向量
try:
eigenvalues, eigenvectors = np.linalg.eig(H_tension)
except np.linalg.LinAlgError as e:
raise RuntimeError(f"谱分析失败: {e}")

# 排序(按本征值大小)
sorted_indices = np.argsort(eigenvalues.real)
eigenvalues = eigenvalues[sorted_indices]
eigenvectors = eigenvectors[:, sorted_indices]

spectral_classification = {}

if eigenvalue_classification:
# 分类本征值
theoretical_eigenvalues = [-1, 0, 1] # 理论预测
classified_eigenvalues = {
'time_related': [], # 接近-1
'conservation_related': [], # 接近0
'space_related': [], # 接近1
'other': []
}

tolerance = 0.1 # 分类容忍度

for eigval in eigenvalues:
real_part = eigval.real

if abs(real_part - (-1)) < tolerance:
classified_eigenvalues['time_related'].append(eigval)
elif abs(real_part - 0) < tolerance:
classified_eigenvalues['conservation_related'].append(eigval)
elif abs(real_part - 1) < tolerance:
classified_eigenvalues['space_related'].append(eigval)
else:
classified_eigenvalues['other'].append(eigval)

# 谱性质分析
spectral_properties = {
'has_minus_one_eigenvalue': len(classified_eigenvalues['time_related']) > 0,
'has_zero_eigenvalue': len(classified_eigenvalues['conservation_related']) > 0,
'has_plus_one_eigenvalue': len(classified_eigenvalues['space_related']) > 0,
'theoretical_structure_match': (
len(classified_eigenvalues['time_related']) >= 1 and
len(classified_eigenvalues['conservation_related']) >= 1 and
len(classified_eigenvalues['space_related']) >= 1
),
'spectral_radius': np.max(np.abs(eigenvalues)),
'condition_number': np.linalg.cond(eigenvectors)
}

spectral_classification = {
'classified_eigenvalues': classified_eigenvalues,
'spectral_properties': spectral_properties,
'eigenvalue_count_by_type': {
'time': len(classified_eigenvalues['time_related']),
'conservation': len(classified_eigenvalues['conservation_related']),
'space': len(classified_eigenvalues['space_related']),
'other': len(classified_eigenvalues['other'])
}
}

return eigenvalues, eigenvectors, spectral_classification

def _construct_complete_tension_hamiltonian(state: np.ndarray) -> np.ndarray:
"""构造完整的张力Hamiltonian矩阵"""
n = len(state)

# 获取数学常数
e_val = math.e
phi_val = (1 + math.sqrt(5)) / 2
pi_val = math.pi

# 基础Hamiltonian
H_time = _construct_time_hamiltonian(n, e_val, pi_val)
H_space = _construct_space_hamiltonian(n, phi_val)

# 组合张力Hamiltonian
# H_tension = e^(iπ) * H_time + (φ²-φ) * H_space
time_coefficient = cmath.exp(1j * pi_val) # e^(iπ) = -1
space_coefficient = phi_val**2 - phi_val # φ²-φ = 1

H_tension = time_coefficient * H_time + space_coefficient * H_space

# 确保Hermitian性质(对于实本征值)
H_tension = 0.5 * (H_tension + H_tension.conj().T)

return H_tension

性能基准与优化

计算复杂度要求

算法时间复杂度空间复杂度数值稳定性
张力分解O(n²)O(n)复数高精度算术
守恒验证O(1)O(1)超高精度验证
平衡态检测O(n²)O(n)扰动稳定性分析
梯度计算O(n²)O(n)数值微分稳定
动力学演化O(tn²)O(tn)自适应时间步长
Zeckendorf编码O(log n)O(log n)Fibonacci精度
谱分析O(n³)O(n²)本征值稳定算法

数值精度要求

  • 基础恒等式精度:1e-15(e^(iπ) + φ² - φ = 0 的验证)
  • 张力分解精度:1e-14(时间和空间张力的分离)
  • 守恒验证精度:1e-16(张力总和应为零)
  • 复数计算精度:1e-15(避免相位误差累积)
  • 梯度计算精度:1e-12(数值微分稳定性)
  • Zeckendorf编码精度:整数精确(无舍入误差)
  • 收敛判据精度:1e-12(动力学演化收敛)

边界条件处理

  • 奇异状态:零向量或极小范数状态的特殊处理
  • 数值溢出:复数指数计算的范围检查
  • 收敛失败:动力学演化的重启机制
  • 谱分析失败:病态矩阵的正则化处理
  • 编码溢出:大数的Fibonacci序列扩展
  • 精度损失:自适应精度调整机制

测试验证标准

必需测试用例

  1. 基础恒等式验证:超高精度验证 e^(iπ) + φ² - φ = 0
  2. 张力分解一致性:分解结果与理论值的匹配度
  3. 守恒验证完备性:各种状态下守恒条件的检查
  4. 平衡态检测准确性:正确识别collapse平衡态
  5. 梯度计算正确性:梯度方向与理论预测的一致性
  6. 动力学演化收敛性:向平衡态收敛的稳定性
  7. Zeckendorf编码有效性:No-11约束下的正确编码
  8. 谱分析理论符合:本征值结构与理论的匹配

边界测试

  • 极端精度要求(precision < 1e-18)
  • 高维系统状态(n > 1000)
  • 病态张力配置(接近奇异的张力矩阵)
  • 非平衡初态演化(远离平衡态的初始条件)
  • 扰动稳定性极限(最大可承受扰动幅度)
  • 长时间演化(extended time evolution)

交叉验证要求

  1. 与T26-4一致性:三元统一恒等式的完全兼容
  2. 与T8-5/T19-4关联:张力概念的理论连贯性
  3. 数学恒等式验证:所有推导步骤的数值验证
  4. 物理意义合理性:collapse状态的物理解释一致性
  5. 编码系统兼容:Zeckendorf编码的内在一致性

这个形式化规范确保了T21-4理论的完整实现和严格验证,为collapse-aware张力守恒提供了全面的算法基础。