T21-2 φ-谱共识定理 - 形式化规范
依赖导入
import numpy as np
import math
import cmath
from typing import List, Dict, Tuple, Optional, Any
from dataclasses import dataclass
from enum import Enum
# 从前置定理导入
from T21_1_formal import PhiZetaFunction, ZeroDistributionCalculator
from T20_2_formal import TraceStructure, TraceLayerDecomposer
from T20_3_formal import RealityShell, InformationFlow
from T20_1_formal import ZeckendorfString, PsiCollapse
1. 量子态和φ-本征态
1.1 量子态表示
@dataclass
class QuantumState:
"""量子态的Zeckendorf表示"""
def __init__(self, coefficients: Dict[int, complex]):
self.phi = (1 + np.sqrt(5)) / 2
self.coefficients = self._normalize_coefficients(coefficients)
self.dimension = max(coefficients.keys()) + 1 if coefficients else 0
self.entropy = self._compute_entropy()
def _normalize_coefficients(self, coeffs: Dict[int, complex]) -> Dict[int, complex]:
"""归一化系数,保证模方和为1"""
total = sum(abs(c)**2 for c in coeffs.values())
if total == 0:
return {}
factor = 1.0 / math.sqrt(total)
return {k: c * factor for k, c in coeffs.items()}
def _compute_entropy(self) -> float:
"""计算von Neumann熵"""
entropy = 0.0
for c in self.coefficients.values():
p = abs(c) ** 2
if p > 1e-15:
entropy -= p * math.log(p)
return entropy
def inner_product(self, other: 'QuantumState') -> complex:
"""计算内积"""
result = 0.0 + 0.0j
for n in self.coefficients:
if n in other.coefficients:
result += np.conj(self.coefficients[n]) * other.coefficients[n]
return result
def tensor_product(self, other: 'QuantumState') -> 'QuantumState':
"""张量积"""
new_coeffs = {}
for n1, c1 in self.coefficients.items():
for n2, c2 in other.coefficients.items():
# 使用Zeckendorf编码组合索引
combined_index = self._combine_indices(n1, n2)
new_coeffs[combined_index] = c1 * c2
return QuantumState(new_coeffs)
def _combine_indices(self, n1: int, n2: int) -> int:
"""组合两个索引,保持no-11约束"""
# 使用Fibonacci数的性质组合
z1 = ZeckendorfString(n1)
z2 = ZeckendorfString(n2)
combined = z1 + z2
return combined.value
1.2 φ-本征态生成器
class PhiEigenstateGenerator:
"""φ-本征态生成器"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.cache = {}
def generate_eigenstate(self, n: int) -> QuantumState:
"""生成第n个φ-本征态"""
if n in self.cache:
return self.cache[n]
if n == 0:
# 基态
coeffs = {0: 1.0 + 0.0j}
else:
# 递归生成
prev_state = self.generate_eigenstate(n - 1)
coeffs = self._apply_creation_operator(prev_state, n)
eigenstate = QuantumState(coeffs)
self.cache[n] = eigenstate
return eigenstate
def _apply_creation_operator(self, state: QuantumState, n: int) -> Dict[int, complex]:
"""应用产生算子"""
new_coeffs = {}
for k, c in state.coefficients.items():
# φ-递归关系
new_index = int(k * self.phi) + n
# 确保满足no-11约束
z_string = ZeckendorfString(new_index)
if self._check_no_11(z_string.representation):
amplitude = c * (self.phi ** (-n/2))
new_coeffs[z_string.value] = amplitude
return new_coeffs
def _check_no_11(self, binary_str: str) -> bool:
"""检查no-11约束"""
return '11' not in binary_str
def compute_completeness(self, max_n: int) -> float:
"""计算前max_n个本征态的完备性"""
# 构造投影算子之和
total_projection = 0.0
for n in range(max_n):
eigenstate = self.generate_eigenstate(n)
# |φ_n⟩⟨φ_n|的迹
projection = sum(abs(c)**2 for c in eigenstate.coefficients.values())
total_projection += projection
return total_projection
2. 共识算子实现
2.1 共识算子类
class ConsensusOperator:
"""φ-谱共识算子"""
def __init__(self, zeta_function: PhiZetaFunction):
self.phi = (1 + np.sqrt(5)) / 2
self.zeta_func = zeta_function
self.zeros_cache = None
self.eigenstate_gen = PhiEigenstateGenerator()
def apply(self, state1: QuantumState, state2: QuantumState,
t: float) -> QuantumState:
"""应用共识算子"""
# 获取φ-ζ函数零点
if self.zeros_cache is None:
self.zeros_cache = self._compute_zeros()
# 初始化共识态
consensus_coeffs = {}
for rho in self.zeros_cache:
# 提取零点虚部
gamma = rho.imag
# 时间演化因子
evolution = cmath.exp(1j * gamma * t)
# 计算留数(零点导数的倒数)
residue = self._compute_residue(rho)
# 贡献到共识态
contribution = self._zero_contribution(state1, state2,
evolution, residue)
for k, v in contribution.items():
if k in consensus_coeffs:
consensus_coeffs[k] += v
else:
consensus_coeffs[k] = v
return QuantumState(consensus_coeffs)
def _compute_zeros(self, max_zeros: int = 10) -> List[complex]:
"""计算φ-ζ函数的前几个零点"""
zeros = self.zeta_func.find_zeros_in_critical_strip(0.1, 50.0, t_step=0.5)
return zeros[:max_zeros]
def _compute_residue(self, zero: complex) -> complex:
"""计算零点处的留数"""
h = 1e-6
# 数值微分计算导数
f_plus = self.zeta_func.compute(zero + h)
f_minus = self.zeta_func.compute(zero - h)
derivative = (f_plus - f_minus) / (2 * h)
if abs(derivative) < 1e-15:
return 0.0 + 0.0j
return 1.0 / derivative
def _zero_contribution(self, state1: QuantumState, state2: QuantumState,
evolution: complex, residue: complex) -> Dict[int, complex]:
"""计算单个零点的贡献"""
contribution = {}
# 张量积的系数
for n1, c1 in state1.coefficients.items():
for n2, c2 in state2.coefficients.items():
# 组合索引
z1 = ZeckendorfString(n1)
z2 = ZeckendorfString(n2)
combined = z1 + z2
# 贡献幅度
amplitude = c1 * c2 * evolution * residue
if combined.value in contribution:
contribution[combined.value] += amplitude
else:
contribution[combined.value] = amplitude
return contribution
2.2 谱分解器
class SpectralDecomposer:
"""频谱分解器"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.eigenstate_gen = PhiEigenstateGenerator()
def decompose(self, state: QuantumState, max_components: int = 20) -> Dict[int, complex]:
"""将态分解到φ-本征态基"""
decomposition = {}
for n in range(max_components):
# 生成第n个本征态
eigenstate = self.eigenstate_gen.generate_eigenstate(n)
# 计算投影系数
coefficient = state.inner_product(eigenstate)
# φ-调制
coefficient *= self.phi ** (-n/2)
# 存储非零系数
if abs(coefficient) > 1e-10:
decomposition[n] = coefficient
return decomposition
def reconstruct(self, decomposition: Dict[int, complex]) -> QuantumState:
"""从谱分解重构量子态"""
reconstructed_coeffs = {}
for n, c_n in decomposition.items():
eigenstate = self.eigenstate_gen.generate_eigenstate(n)
# 反φ-调制
amplitude = c_n * (self.phi ** (n/2))
# 累加贡献
for k, v in eigenstate.coefficients.items():
if k in reconstructed_coeffs:
reconstructed_coeffs[k] += amplitude * v
else:
reconstructed_coeffs[k] = amplitude * v
return QuantumState(reconstructed_coeffs)
def compute_spectral_entropy(self, decomposition: Dict[int, complex]) -> float:
"""计算谱熵"""
entropy = 0.0
# 归一化
total = sum(abs(c)**2 for c in decomposition.values())
for c in decomposition.values():
p = abs(c)**2 / total
if p > 1e-15:
entropy -= p * math.log(p)
return entropy
3. Fourier变换和谱共识
3.1 φ-调制Fourier变换
class PhiModulatedFourier:
"""φ-调制的Fourier变换"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.omega_phi = 2 * math.pi / math.log(self.phi)
def transform(self, trace_structure: TraceStructure) -> np.ndarray:
"""对trace结构进行Fourier变换"""
# 提取trace值序列
trace_values = []
max_layer = max(trace_structure.components.keys())
for n in range(1, max_layer + 1):
if n in trace_structure.components:
trace_values.append(trace_structure.components[n].value)
else:
trace_values.append(0)
# 应用FFT
spectrum = np.fft.fft(trace_values)
# φ-调制
for k in range(len(spectrum)):
spectrum[k] *= self.phi ** (-k / len(spectrum))
return spectrum
def inverse_transform(self, spectrum: np.ndarray) -> List[float]:
"""逆Fourier变换"""
# 反φ-调制
demodulated = spectrum.copy()
for k in range(len(demodulated)):
demodulated[k] *= self.phi ** (k / len(demodulated))
# 应用逆FFT
trace_values = np.fft.ifft(demodulated).real
return list(trace_values)
def compute_power_spectrum(self, trace_structure: TraceStructure) -> np.ndarray:
"""计算功率谱"""
spectrum = self.transform(trace_structure)
power = np.abs(spectrum) ** 2
# 验证标度律:P(ω) ~ ω^(-2+1/φ)
exponent = -2 + 1/self.phi
return power
def verify_scaling_invariance(self, spectrum: np.ndarray) -> bool:
"""验证φ-标度不变性"""
n = len(spectrum)
# 比较 F[φω] 和 φ^(-1)F[ω]
for k in range(1, n//2):
k_scaled = int(k * self.phi) % n
if k_scaled < n:
left = spectrum[k_scaled]
right = spectrum[k] / self.phi
# 允许小误差
if abs(left - right) > 0.1 * abs(right):
return False
return True
3.2 谱共识验证器
class SpectralConsensusVerifier:
"""谱共识验证器"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.fourier = PhiModulatedFourier()
def verify_consensus(self, shell1: RealityShell, shell2: RealityShell) -> Dict[str, Any]:
"""验证两个Shell的谱共识"""
# 计算trace结构
trace1 = self._extract_trace_structure(shell1)
trace2 = self._extract_trace_structure(shell2)
# Fourier变换
spectrum1 = self.fourier.transform(trace1)
spectrum2 = self.fourier.transform(trace2)
# 计算共识度量
consensus_metric = self._compute_consensus_metric(spectrum1, spectrum2)
# 检查共识条件
omega_phi = self.fourier.omega_phi
product = spectrum1 * np.conj(spectrum2)
# 理论预测
expected = np.zeros_like(product, dtype=complex)
expected[int(omega_phi * len(product) / (2 * np.pi))] = self.phi ** (1j * omega_phi)
# 计算偏差
deviation = np.linalg.norm(product - expected) / np.linalg.norm(expected)
return {
'consensus_achieved': deviation < 0.1,
'consensus_metric': consensus_metric,
'deviation': deviation,
'dominant_frequency': self._find_dominant_frequency(product),
'phase_coherence': self._compute_phase_coherence(spectrum1, spectrum2)
}
def _extract_trace_structure(self, shell: RealityShell) -> TraceStructure:
"""从Shell提取trace结构"""
components = {}
for i, state in enumerate(shell.states):
trace_value = shell.trace_calculator.compute_full_trace(state)
components[i+1] = type('TraceComponent', (), {'value': trace_value})()
return type('TraceStructure', (), {'components': components})()
def _compute_consensus_metric(self, spectrum1: np.ndarray,
spectrum2: np.ndarray) -> float:
"""计算共识度量"""
# 归一化
s1_norm = spectrum1 / np.linalg.norm(spectrum1)
s2_norm = spectrum2 / np.linalg.norm(spectrum2)
# 谱相似度
similarity = abs(np.vdot(s1_norm, s2_norm))
return similarity
def _find_dominant_frequency(self, spectrum: np.ndarray) -> float:
"""找到主导频率"""
power = np.abs(spectrum) ** 2
dominant_index = np.argmax(power)
# 转换为频率
frequency = 2 * np.pi * dominant_index / len(spectrum)
return frequency
def _compute_phase_coherence(self, spectrum1: np.ndarray,
spectrum2: np.ndarray) -> float:
"""计算相位相干性"""
# 计算相位差
phase1 = np.angle(spectrum1)
phase2 = np.angle(spectrum2)
phase_diff = phase1 - phase2
# 相干性度量
coherence = abs(np.mean(np.exp(1j * phase_diff)))
return coherence
4. 熵增监测系统
4.1 熵计算器
class EntropyCalculator:
"""熵计算和监测"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def compute_von_neumann_entropy(self, state: QuantumState) -> float:
"""计算von Neumann熵"""
# 已在QuantumState中实现
return state.entropy
def compute_entanglement_entropy(self, state1: QuantumState,
state2: QuantumState) -> float:
"""计算纠缠熵"""
# 计算约化密度矩阵的熵
combined = state1.tensor_product(state2)
# 部分迹运算(简化实现)
reduced_coeffs = {}
for k, v in combined.coefficients.items():
# 取模运算模拟部分迹
reduced_index = k % len(state1.coefficients)
if reduced_index in reduced_coeffs:
reduced_coeffs[reduced_index] += abs(v) ** 2
else:
reduced_coeffs[reduced_index] = abs(v) ** 2
# 计算熵
entropy = 0.0
total = sum(reduced_coeffs.values())
for p in reduced_coeffs.values():
p_norm = p / total
if p_norm > 1e-15:
entropy -= p_norm * math.log(p_norm)
return entropy
def verify_entropy_increase(self, initial_state: QuantumState,
final_state: QuantumState,
dt: float) -> Dict[str, Any]:
"""验证熵增定律"""
S_initial = initial_state.entropy
S_final = final_state.entropy
dS = S_final - S_initial
# 理论预测(简化)
overlap = abs(initial_state.inner_product(initial_state)) ** 2
expected_dS = self.phi * overlap * dt
return {
'initial_entropy': S_initial,
'final_entropy': S_final,
'entropy_increase': dS,
'expected_increase': expected_dS,
'violation': dS < 0, # 是否违反熵增
'relative_error': abs(dS - expected_dS) / expected_dS if expected_dS > 0 else 0
}
4.2 共识过程监测器
class ConsensusProcessMonitor:
"""共识过程监测器"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.entropy_calc = EntropyCalculator()
self.history = []
def record_step(self, state1: QuantumState, state2: QuantumState,
consensus_state: QuantumState, t: float):
"""记录共识步骤"""
step_data = {
'time': t,
'entropy1': state1.entropy,
'entropy2': state2.entropy,
'entropy_consensus': consensus_state.entropy,
'total_entropy': state1.entropy + state2.entropy,
'entanglement_entropy': self.entropy_calc.compute_entanglement_entropy(
state1, state2),
'overlap': abs(state1.inner_product(state2)) ** 2
}
self.history.append(step_data)
def verify_monotonic_increase(self) -> bool:
"""验证熵的单调增加"""
if len(self.history) < 2:
return True
for i in range(1, len(self.history)):
if self.history[i]['entropy_consensus'] <= self.history[i-1]['entropy_consensus']:
return False
return True
def compute_entropy_production_rate(self) -> float:
"""计算熵产生率"""
if len(self.history) < 2:
return 0.0
total_dS = 0.0
total_dt = 0.0
for i in range(1, len(self.history)):
dS = self.history[i]['entropy_consensus'] - self.history[i-1]['entropy_consensus']
dt = self.history[i]['time'] - self.history[i-1]['time']
total_dS += dS
total_dt += dt
return total_dS / total_dt if total_dt > 0 else 0.0
def get_consensus_timeline(self) -> Dict[str, List[float]]:
"""获取共识时间线"""
timeline = {
'times': [],
'entropies': [],
'overlaps': [],
'entanglement': []
}
for step in self.history:
timeline['times'].append(step['time'])
timeline['entropies'].append(step['entropy_consensus'])
timeline['overlaps'].append(step['overlap'])
timeline['entanglement'].append(step['entanglement_entropy'])
return timeline
5. 完整共识系统
5.1 谱共识系统
class SpectralConsensusSystem:
"""完整的谱共识系统"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.zeta_func = PhiZetaFunction()
self.consensus_op = ConsensusOperator(self.zeta_func)
self.decomposer = SpectralDecomposer()
self.verifier = SpectralConsensusVerifier()
self.monitor = ConsensusProcessMonitor()
def achieve_consensus(self, shell1: RealityShell, shell2: RealityShell,
max_iterations: int = 100) -> Dict[str, Any]:
"""达成两个Shell的共识"""
# 提取量子态
state1 = self._shell_to_quantum_state(shell1)
state2 = self._shell_to_quantum_state(shell2)
# 量子化时间步长
dt = math.log(self.phi)
t = 0.0
consensus_state = None
for iteration in range(max_iterations):
# 应用共识算子
consensus_state = self.consensus_op.apply(state1, state2, t)
# 记录监测数据
self.monitor.record_step(state1, state2, consensus_state, t)
# 验证共识条件
verification = self.verifier.verify_consensus(shell1, shell2)
if verification['consensus_achieved']:
break
# 更新时间
t += dt
# 更新状态(部分反馈)
state1 = self._update_state(state1, consensus_state, 0.1)
state2 = self._update_state(state2, consensus_state, 0.1)
# 验证熵增
entropy_verified = self.monitor.verify_monotonic_increase()
return {
'consensus_achieved': verification['consensus_achieved'],
'iterations': iteration + 1,
'final_time': t,
'final_state': consensus_state,
'entropy_verified': entropy_verified,
'entropy_production_rate': self.monitor.compute_entropy_production_rate(),
'timeline': self.monitor.get_consensus_timeline()
}
def _shell_to_quantum_state(self, shell: RealityShell) -> QuantumState:
"""将Shell转换为量子态"""
coeffs = {}
for i, state in enumerate(shell.states):
# 使用Zeckendorf值作为基态索引
coeffs[state.value] = complex(1.0 / math.sqrt(len(shell.states)), 0)
return QuantumState(coeffs)
def _update_state(self, state: QuantumState, consensus: QuantumState,
mixing: float) -> QuantumState:
"""更新状态(部分混合)"""
new_coeffs = {}
# 线性混合
for k in set(state.coefficients.keys()) | set(consensus.coefficients.keys()):
c1 = state.coefficients.get(k, 0)
c2 = consensus.coefficients.get(k, 0)
new_coeffs[k] = (1 - mixing) * c1 + mixing * c2
return QuantumState(new_coeffs)
注记: T21-2的形式化规范提供了完整的φ-谱共识机制实现,包括量子态表示、φ-本征态生成、共识算子、Fourier变换、熵监测等核心组件。所有实现严格遵守Zeckendorf编码的no-11约束,并与φ-ζ函数零点结构紧密结合。