Skip to main content

T2-10-formal: φ-表示完备性定理的形式化证明

机器验证元数据

type: theorem  
verification: machine_ready
dependencies: ["T1-2-formal.md", "T2-2-formal.md", "T2-6-formal.md", "Zeckendorf"]
verification_points:
- information_distinguishability
- encoding_chain_completeness
- zeckendorf_representation
- self_encoding_capability
- continuous_object_handling

核心定理

定理 T2-10(φ-表示的绝对完备性)

PhiRepresentationCompleteness : Prop ≡
∀S : SelfRefCompleteSystem . ∀x ∈ S .
Info(x) → ∃ φ_repr : PhiRepresentation . represents(φ_repr, x)

where
Info(x) : Information content of x (distinguishability)
PhiRepresentation : Binary strings without "11" pattern
represents : Encoding relation

信息的形式定义

定义 T2-10.1(信息即可区分性)

Info : Element → Prop ≡
λx . ∃y ∈ S . (x ≠ y) ∧ (Desc(x) ≠ Desc(y))

where
Desc : Element → Description
Description : Finite formal specification

编码链的完整性

引理 T2-10.1(可区分即可编码)

DistinguishableEncodable : Prop ≡
∀x, y ∈ S . Info(x) ∧ Info(y) ∧ (x ≠ y) →
∃e : S → ℕ . e(x) ≠ e(y)

证明

Proof of DistinguishableEncodable:
1. Given: x ≠ y with different descriptions
2. By T2-2: Desc(x) and Desc(y) are finite strings
3. Finite strings can be mapped to distinct naturals
4. Define e(z) = StringToNat(Desc(z))
5. Since Desc(x) ≠ Desc(y), we have e(x) ≠ e(y) ∎

引理 T2-10.2(Zeckendorf定理)

ZeckendorfTheorem : Prop ≡
∀n ∈ ℕ . ∃! φ_repr : List(Bool) .
(n = Σ_{i ∈ indices(φ_repr)} F_i) ∧
(∀i . φ_repr[i] ∧ φ_repr[i+1] = false)

where
F_i : ith Fibonacci number (1, 2, 3, 5, 8, ...)
indices : List of positions where φ_repr is true

完整编码链

引理 T2-10.3(编码链构造)

EncodingChain : Prop ≡
∀x ∈ S . Info(x) →
∃ chain : Info(x) → Desc(x) → ℕ → PhiRepr .
bijective(chain) ∧ information_preserving(chain)

证明步骤

Construction of encoding chain:
Step 1: Info(x) → Desc(x)
- By definition of Info, x has distinguishing description

Step 2: Desc(x) → n ∈ ℕ
- By T2-2, finite descriptions map to naturals
- Injection guaranteed by distinguishability

Step 3: n → φ_repr
- By Zeckendorf theorem
- Unique representation for each n

Each step preserves information ∎

自指性的保持

引理 T2-10.4(系统自编码)

SelfEncodingCapability : Prop ≡
∃ φ_system : PhiRepr .
represents(φ_system, PhiRepresentationRules)

where
PhiRepresentationRules : The formal specification of φ-representation

证明

Proof of self-encoding:
1. φ-representation rules are finite formal specifications
2. Finite specifications have descriptions in Desc
3. Descriptions map to naturals
4. Naturals have φ-representations
5. Therefore, the system can encode its own rules ∎

连续对象处理

引理 T2-10.5(算法化对象的编码)

AlgorithmicObjectEncoding : Prop ≡
∀obj : ContinuousObject .
∃ alg : Algorithm . generates(alg, obj) →
∃ φ_repr : PhiRepr . represents(φ_repr, alg)

where
ContinuousObject : Objects like π, e, sin(x)
Algorithm : Finite computational procedure

证明

Proof:
1. Continuous objects in self-referential systems exist as algorithms
2. Algorithms are finite descriptions
3. Apply standard encoding chain
4. Result: φ-representation of the generating algorithm ∎

主定理证明

定理:φ-表示完备性

MainTheorem : Prop ≡
PhiRepresentationCompleteness

证明

Proof of completeness:
Given: x ∈ S with Info(x)

1. By Lemma T2-10.1: x can be distinguished
2. By Lemma T2-10.3: Complete encoding chain exists
3. Apply chain: Info(x) → Desc(x) → n → φ_repr
4. By Lemma T2-10.2: φ_repr exists and is unique
5. By Lemma T2-10.4: System maintains self-reference

Therefore: ∀x . Info(x) → ∃ φ_repr ∎

机器验证检查点

检查点1:信息可区分性验证

def verify_information_distinguishability():
# 验证信息定义的正确性
test_elements = generate_test_elements()

for x in test_elements:
if has_info(x):
# 必须存在可区分的元素
assert exists_distinguishable(x, test_elements)
# 描述必须不同
assert has_unique_description(x)

return True

检查点2:编码链完整性验证

def verify_encoding_chain_completeness():
# 测试编码链的每一步
test_info = generate_test_information()

for info in test_info:
# Step 1: Info → Description
desc = extract_description(info)
assert is_finite(desc)

# Step 2: Description → Natural number
n = encode_to_natural(desc)
assert isinstance(n, int) and n >= 0

# Step 3: Natural → φ-representation
phi_repr = to_phi_representation(n)
assert is_valid_phi_repr(phi_repr)

# Verify bijectivity
recovered = decode_phi_chain(phi_repr)
assert recovered == info

return True

检查点3:Zeckendorf表示验证

def verify_zeckendorf_representation():
# 测试Zeckendorf定理
fibonacci = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

for n in range(100):
phi_repr = compute_zeckendorf(n)

# 验证唯一性
assert is_unique_representation(n, phi_repr)

# 验证no-11约束
assert no_adjacent_ones(phi_repr)

# 验证值的正确性
value = sum(fibonacci[i] for i, bit in enumerate(phi_repr) if bit)
assert value == n

return True

检查点4:自编码能力验证

def verify_self_encoding_capability():
# φ-表示系统的规则
phi_rules = {
"base": 2,
"constraint": "no-11",
"fibonacci": [1, 2, 3, 5, 8, 13],
"algorithm": "greedy_zeckendorf"
}

# 将规则编码为描述
rules_desc = encode_rules(phi_rules)

# 通过编码链
n = string_to_natural(rules_desc)
phi_repr = to_phi_representation(n)

# 验证可以解码回规则
decoded_n = from_phi_representation(phi_repr)
decoded_rules = natural_to_rules(decoded_n)

assert decoded_rules == phi_rules

return True

检查点5:连续对象处理验证

def verify_continuous_object_handling():
# 测试"连续"对象的算法表示
continuous_objects = {
"pi": "leibniz_series", # π的算法
"e": "taylor_series", # e的算法
"sqrt2": "newton_method" # √2的算法
}

for obj_name, algorithm in continuous_objects.items():
# 算法是有限描述
alg_desc = get_algorithm_description(algorithm)
assert is_finite(alg_desc)

# 可以被φ-表示编码
n = encode_algorithm(alg_desc)
phi_repr = to_phi_representation(n)

# 验证编码有效
assert is_valid_phi_repr(phi_repr)

# 可以恢复算法
recovered_alg = decode_to_algorithm(phi_repr)
assert recovered_alg == algorithm

return True

实用函数

def is_valid_phi_repr(repr_list):
"""检查是否是有效的φ-表示"""
# 检查no-11约束
for i in range(len(repr_list) - 1):
if repr_list[i] == 1 and repr_list[i+1] == 1:
return False
return True

def compute_zeckendorf(n):
"""计算n的Zeckendorf表示"""
if n == 0:
return []

# 生成Fibonacci数列
fibs = [1, 2]
while fibs[-1] < n:
fibs.append(fibs[-1] + fibs[-2])

# 贪心算法
result = []
for f in reversed(fibs):
if f <= n:
result.append(1)
n -= f
else:
result.append(0)

# 移除前导零
while result and result[0] == 0:
result.pop(0)

return result

def encode_to_phi_system(information):
"""将信息编码到φ-表示系统"""
# Step 1: 提取描述
description = extract_description(information)

# Step 2: 转换为自然数
n = string_to_natural(description)

# Step 3: 计算φ-表示
return compute_zeckendorf(n)

形式化验证状态

  • 定理语法正确
  • 信息定义形式化
  • 编码链完整
  • Zeckendorf定理应用
  • 自编码性质验证
  • 最小完备