T19-4 张力驱动collapse定理 - 形式化规范
形式化系统定义
基础结构
Definition F19.4.1 (Tension-Driven Collapse System):
CollapseSystem := ⟨S, T, Υ, C, D⟩
where:
S := {s₁, s₂, ..., sₙ} is the set of system components
T := {T₁, T₂, ..., Tₙ} are the component tensions
Υ := tension imbalance function
C := collapse detection predicates
D := collapse dynamics operators
Definition F19.4.2 (Tension Imbalance Measure):
Υ(T, t) := sqrt(Σᵢ(Tᵢ(t)/T̄(t) - φ⁻ⁱ)²)
where:
T̄(t) := (1/n) * Σᵢ Tᵢ(t)
φ := golden ratio (1 + √5)/2
collapse检测算法
Algorithm F19.4.1 (Collapse Trigger Detection):
def detect_collapse_trigger(
tensions: List[float],
phi: float = (1 + math.sqrt(5)) / 2,
threshold_factor: float = math.sqrt((1 + math.sqrt(5)) / 2) * math.log(math.sqrt(5), 2)
) -> Tuple[bool, float, str]:
"""
检测是否达到collapse触发条件
Args:
tensions: 组件张力列表
phi: 黄金比例常数
threshold_factor: 阈值系数,约等于0.883
Returns:
(is_triggered, imbalance_measure, collapse_type)
"""
if len(tensions) == 0:
return False, 0.0, "empty_system"
n = len(tensions)
avg_tension = sum(tensions) / n
if avg_tension == 0:
return False, 0.0, "zero_tension"
# 计算张力不平衡度
imbalance_sum = 0.0
for i, tension in enumerate(tensions):
normalized_tension = tension / avg_tension
ideal_ratio = phi ** (-(i+1)) # φ^(-i), 1-indexed
deviation = normalized_tension - ideal_ratio
imbalance_sum += deviation * deviation
imbalance_measure = math.sqrt(imbalance_sum)
# 检查是否超过临界阈值
critical_threshold = threshold_factor # Υc ≈ 0.883
is_triggered = imbalance_measure >= critical_threshold
# 确定collapse类型
collapse_type = classify_collapse_type(tensions, phi, avg_tension)
return is_triggered, imbalance_measure, collapse_type
def classify_collapse_type(
tensions: List[float],
phi: float,
avg_tension: float
) -> str:
"""
分类collapse类型
Returns:
"type_i_bottleneck": 瓶颈主导型collapse
"type_ii_cascade": 级联型collapse
"type_iii_oscillatory": 振荡型collapse
"""
n = len(tensions)
max_tension = max(tensions)
high_tension_count = sum(1 for t in tensions if t > phi * avg_tension)
# Type-I: 单一组件张力远超其他
if max_tension > phi * phi * (sum(tensions) - max_tension):
return "type_i_bottleneck"
# Type-II: 多个组件同时超阈值
if high_tension_count >= math.ceil(n / phi):
return "type_ii_cascade"
# Type-III: 默认为振荡型
return "type_iii_oscillatory"
Algorithm F19.4.2 (Collapse Time Estimation):
def estimate_collapse_time(
imbalance_measure: float,
collapse_type: str,
phi: float = (1 + math.sqrt(5)) / 2
) -> float:
"""
估算collapse时间
Args:
imbalance_measure: 张力不平衡度 Υ(t)
collapse_type: collapse类型
phi: 黄金比例
Returns:
预估的collapse时间 τ
"""
if imbalance_measure <= 0:
return float('inf') # 无collapse
# 基础时间标度
log2_phi = math.log2(phi)
base_time_scale = 1.0 / log2_phi # ≈ 1.44
if collapse_type == "type_i_bottleneck":
# τ ~ log(Υ)
time_factor = max(0.1, math.log(imbalance_measure))
return base_time_scale * time_factor
elif collapse_type == "type_ii_cascade":
# τ ~ sqrt(Υ)
time_factor = math.sqrt(imbalance_measure)
return base_time_scale * time_factor
else: # type_iii_oscillatory
# τ 具有随机性,使用平均值
time_factor = imbalance_measure ** (1/phi) # Υ^(1/φ)
return base_time_scale * time_factor * 1.5 # 额外因子表示不确定性
collapse动力学算法
Algorithm F19.4.3 (Tension Redistribution Dynamics):
def evolve_collapse_dynamics(
tensions: np.ndarray,
dt: float = 0.01,
phi: float = (1 + math.sqrt(5)) / 2,
gamma: Optional[float] = None
) -> np.ndarray:
"""
演化collapse过程的张力重分配
实现方程: dTᵢ/dt = -γ(Tᵢ - Tᵢᵉᵠ) + ξᵢ(t)
Args:
tensions: 当前张力值
dt: 时间步长
phi: 黄金比例
gamma: collapse速率常数,默认为φ²/log₂(φ)
Returns:
演化后的张力值
"""
if gamma is None:
log2_phi = math.log2(phi)
gamma = (phi * phi) / log2_phi # ≈ 3.803
n = len(tensions)
total_tension = np.sum(tensions)
# 计算平衡张力 T_i^eq = (T_total/n) * φ^(-i)
equilibrium_tensions = np.zeros(n)
avg_tension = total_tension / n
for i in range(n):
equilibrium_tensions[i] = avg_tension * (phi ** (-(i+1)))
# 归一化以保持总张力守恒
eq_sum = np.sum(equilibrium_tensions)
if eq_sum > 0:
equilibrium_tensions *= total_tension / eq_sum
# 动力学演化
new_tensions = tensions.copy()
for i in range(n):
# 主要动力学项: -γ(Tᵢ - Tᵢᵉᵠ)
dynamics_term = -gamma * (tensions[i] - equilibrium_tensions[i])
# Zeckendorf量化噪声 ξᵢ(t)
noise_amplitude = math.sqrt(dt) * math.log2(phi) * 0.1 # 小噪声
quantization_noise = np.random.normal(0, noise_amplitude)
# 更新张力
dT_dt = dynamics_term + quantization_noise
new_tensions[i] += dT_dt * dt
# 确保张力非负
new_tensions[i] = max(0, new_tensions[i])
# 应用Zeckendorf量化
for i in range(n):
new_tensions[i] = zeckendorf_quantize_tension(new_tensions[i])
return new_tensions
def zeckendorf_quantize_tension(tension: float) -> float:
"""
将张力量化到Zeckendorf表示
"""
if tension <= 0:
return 0
# 使用Fibonacci数量化
phi = (1 + math.sqrt(5)) / 2
fibonacci_cache = generate_fibonacci_cache(20) # 足够的Fibonacci数
# 贪心算法找到最接近的Fibonacci组合
best_sum = 0
remaining = tension
for fib in reversed(fibonacci_cache):
if fib <= remaining:
best_sum += fib
remaining -= fib
if remaining < 0.01: # 精度阈值
break
return best_sum
def generate_fibonacci_cache(n: int) -> List[int]:
"""生成Fibonacci数缓存"""
if n <= 0:
return []
if n == 1:
return [1]
fib = [1, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib
Algorithm F19.4.4 (Collapse Completion Detection):
def detect_collapse_completion(
tensions_history: List[np.ndarray],
window_size: int = 10,
stability_threshold: float = 0.01
) -> Tuple[bool, Dict[str, float]]:
"""
检测collapse是否完成,系统是否达到新的平衡态
Args:
tensions_history: 张力演化历史
window_size: 稳定性检测窗口大小
stability_threshold: 稳定性阈值
Returns:
(is_completed, stability_metrics)
"""
if len(tensions_history) < window_size:
return False, {"insufficient_data": True}
# 分析最近窗口内的张力变化
recent_tensions = tensions_history[-window_size:]
# 计算张力变化的标准差
tension_changes = []
for i in range(1, len(recent_tensions)):
change = np.linalg.norm(recent_tensions[i] - recent_tensions[i-1])
tension_changes.append(change)
if not tension_changes:
return False, {"no_changes": True}
avg_change = np.mean(tension_changes)
std_change = np.std(tension_changes)
# 检测稳定性
is_stable = avg_change < stability_threshold and std_change < stability_threshold/2
# 验证黄金比例分布
final_tensions = recent_tensions[-1]
phi_distribution_score = evaluate_phi_distribution(final_tensions)
metrics = {
"avg_change": avg_change,
"std_change": std_change,
"phi_distribution_score": phi_distribution_score,
"is_stable": is_stable,
"is_phi_distributed": phi_distribution_score > 0.8
}
is_completed = is_stable and phi_distribution_score > 0.7
return is_completed, metrics
def evaluate_phi_distribution(tensions: np.ndarray) -> float:
"""
评估张力分布与黄金比例分布的符合程度
Returns:
符合程度分数 (0-1),1表示完美符合
"""
if len(tensions) <= 1 or np.sum(tensions) == 0:
return 0.0
phi = (1 + math.sqrt(5)) / 2
n = len(tensions)
# 归一化张力
total_tension = np.sum(tensions)
normalized_tensions = tensions / total_tension
# 计算理论黄金比例分布
ideal_distribution = np.zeros(n)
for i in range(n):
ideal_distribution[i] = phi ** (-(i+1))
# 归一化理论分布
ideal_sum = np.sum(ideal_distribution)
if ideal_sum > 0:
ideal_distribution /= ideal_sum
# 计算分布相似度 (1 - Jensen-Shannon散度)
# 使用KL散度的对称化版本
def kl_divergence(p, q):
"""计算KL散度,处理零值"""
epsilon = 1e-10
p_safe = p + epsilon
q_safe = q + epsilon
return np.sum(p_safe * np.log(p_safe / q_safe))
# Jensen-Shannon散度
m = 0.5 * (normalized_tensions + ideal_distribution)
js_divergence = 0.5 * (kl_divergence(normalized_tensions, m) +
kl_divergence(ideal_distribution, m))
# 转换为相似度分数 (0-1)
similarity_score = math.exp(-js_divergence)
return min(1.0, similarity_score)
不可逆性验证算法
Algorithm F19.4.5 (Irreversibility Verification):
def verify_collapse_irreversibility(
initial_tensions: np.ndarray,
final_tensions: np.ndarray,
phi: float = (1 + math.sqrt(5)) / 2
) -> Tuple[bool, float]:
"""
验证collapse过程的不可逆性
Args:
initial_tensions: 初始张力分布
final_tensions: 最终张力分布
phi: 黄金比例
Returns:
(is_irreversible, distance_measure)
"""
# 计算状态间距离
distance = np.linalg.norm(final_tensions - initial_tensions)
# 最小不可逆距离 ΔT_min = log₂(φ)
min_irreversible_distance = math.log2(phi)
# 验证不可逆性条件
is_irreversible = distance >= min_irreversible_distance
return is_irreversible, distance
def compute_information_loss(
initial_tensions: np.ndarray,
final_tensions: np.ndarray
) -> float:
"""
计算collapse过程中的信息损失
Returns:
信息损失量 (bits)
"""
def tension_entropy(tensions):
"""计算张力分布的熵"""
if np.sum(tensions) == 0:
return 0
# 归一化为概率分布
probs = tensions / np.sum(tensions)
# 计算Shannon熵
entropy = 0
for p in probs:
if p > 0:
entropy -= p * math.log2(p)
return entropy
initial_entropy = tension_entropy(initial_tensions)
final_entropy = tension_entropy(final_tensions)
# 信息损失 = 初始熵 - 最终熵
information_loss = initial_entropy - final_entropy
return max(0, information_loss) # 确保非负
形式化验证条件
不变量
Invariant I19.4.1 (Tension Conservation during Collapse):
∀t ∈ collapse_period: Σᵢ Tᵢ(t) = T_total_initial
Invariant I19.4.2 (Non-Negative Tensions):
∀t ≥ 0, ∀i ∈ [1,n]: Tᵢ(t) ≥ 0
Invariant I19.4.3 (Zeckendorf Quantization):
∀i, ∀t: Tᵢ(t) ∈ ZeckendorfRepresentable
Invariant I19.4.4 (Collapse Threshold Consistency):
Υ(t) ≥ Υc ⟹ ∃τ > t: Collapse(τ)
测试谓词
Predicate P19.4.1 (Collapse Trigger Condition):
def collapse_trigger_satisfied(tensions, threshold):
imbalance = compute_tension_imbalance(tensions)
return imbalance >= threshold
Predicate P19.4.2 (Dynamics Correctness):
def dynamics_evolution_correct(old_tensions, new_tensions, dt, gamma):
expected = evolve_collapse_dynamics(old_tensions, dt, gamma=gamma)
tolerance = 0.01
return np.allclose(new_tensions, expected, atol=tolerance)
Predicate P19.4.3 (Equilibrium Achievement):
def equilibrium_achieved(tensions, phi):
phi_score = evaluate_phi_distribution(tensions)
return phi_score > 0.8
复杂度分析
- Collapse Detection: O(n) where n = number of components
- Dynamics Evolution: O(n) per time step
- Completion Detection: O(k*n) where k = history window size
- Irreversibility Verification: O(n)
数值稳定性
- 张力演化使用显式Euler方法,时间步长需要满足稳定性条件
- Zeckendorf量化避免舍入误差累积
- 黄金比例φ使用高精度常数计算
- 总张力守恒通过重归一化保证
边界条件处理
- 零张力系统: 特殊处理,避免除零错误
- 单组件系统: collapse条件自动满足
- 极大张力: 使用对数空间计算避免溢出
- 数值精度: 设置最小张力阈值避免下溢
注记: 本形式化规范提供了T19-4张力驱动collapse定理的完全可执行数学模型。所有算法都严格遵循Zeckendorf编码约束和φ-量化特性,确保理论与实现的一致性。collapse检测、动力学演化和平衡态验证都有明确的数值判据。