Skip to main content

T19-1 φ-生物量子效应定理 - 形式化规范

类型定义

from typing import Dict, List, Tuple, Optional, Callable, Union, Iterator, Complex
from dataclasses import dataclass
import numpy as np
import math
from enum import Enum
from phi_arithmetic import PhiReal, PhiComplex, PhiMatrix

class BiologicalState(Enum):
"""生物状态类型"""
DNA_ENCODING = "dna_encoding"
PROTEIN_FOLDING = "protein_folding"
ENZYME_CATALYSIS = "enzyme_catalysis"
PHOTOSYNTHESIS = "photosynthesis"
NEURAL_PROCESSING = "neural_processing"
IMMUNE_RECOGNITION = "immune_recognition"

class NucleotideType(Enum):
"""核苷酸类型"""
ADENINE = "A" # φ⁰
THYMINE = "T" # φ¹
GUANINE = "G" # φ²
CYTOSINE = "C" # φ³

class AminoAcidType(Enum):
"""氨基酸类型(φ-编码)"""
ALA = "A" # Alanine - φ⁰
VAL = "V" # Valine - φ¹
LEU = "L" # Leucine - φ²
ILE = "I" # Isoleucine - φ³
# ... (20个氨基酸按φ^n编码)

@dataclass
class ZeckendorfBioCode:
"""生物Zeckendorf编码"""
fibonacci_coefficients: List[int] # Fibonacci系数
biological_meaning: str # 生物学意义
no_consecutive_ones: bool = True # no-11约束验证

def __post_init__(self):
"""验证no-11约束"""
for i in range(len(self.fibonacci_coefficients) - 1):
if self.fibonacci_coefficients[i] == 1 and self.fibonacci_coefficients[i+1] == 1:
raise ValueError(f"违反no-11约束: 位置{i}{i+1}都为1")

@dataclass
class PhiBiologicalState:
"""φ-生物量子态"""
amplitudes: List[PhiComplex] # 量子振幅
biological_basis: List[str] # 生物基态标签
normalization: PhiReal # 归一化常数
coherence_time: PhiReal # 相干时间

def norm_squared(self) -> PhiReal:
"""计算态的模长平方"""
total = PhiReal.zero()
for amp in self.amplitudes:
norm_sq = amp.real * amp.real + amp.imag * amp.imag
total = total + norm_sq
return total

@dataclass
class PhiDNASequence:
"""φ-DNA序列"""
nucleotides: List[NucleotideType] # 核苷酸序列
zeckendorf_encoding: ZeckendorfBioCode # Zeckendorf编码
quantum_state: PhiBiologicalState # 量子态
gene_expression_level: PhiReal # 基因表达水平

@dataclass
class PhiProteinStructure:
"""φ-蛋白质结构"""
amino_acid_sequence: List[AminoAcidType] # 氨基酸序列
folding_energy: PhiReal # 折叠能量
phi_spiral_parameters: List[PhiReal] # φ-螺旋参数
quantum_tunneling_sites: List[int] # 量子隧穿位点

@dataclass
class PhiEnzymeComplex:
"""φ-酶复合体"""
active_site_geometry: PhiMatrix # 活性位点几何
substrate_binding_affinity: PhiReal # 底物结合亲和力
catalytic_efficiency: PhiReal # 催化效率
tunneling_probability: PhiReal # 隧穿概率

class PhiPhotosynthesisSystem:
"""φ-光合作用系统 - 完整量子相干传输实现"""

def __init__(self, num_chromophores: int):
"""初始化光合系统"""
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)
self.num_chromophores = num_chromophores
self.fibonacci = self._generate_fibonacci(num_chromophores + 10)

# 初始化色素分子网络
self.chromophore_network = self._initialize_chromophore_network()
self.excitation_energies = self._calculate_excitation_energies()
self.coupling_matrix = self._build_coupling_matrix()

def _generate_fibonacci(self, n: int) -> List[int]:
"""生成Fibonacci数列"""
if n <= 0:
return []
elif n == 1:
return [1]
elif n == 2:
return [1, 1]

fib = [1, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib

def _initialize_chromophore_network(self) -> List[PhiComplex]:
"""初始化色素分子网络"""
network = []
for i in range(self.num_chromophores):
# 初始激发态幅度按φ衰减
amplitude = PhiReal.one() / (self.phi ** i) if i > 0 else PhiReal.one()
phase = PhiReal.from_decimal(2 * math.pi * i / self.num_chromophores)

excitation = PhiComplex(
amplitude * PhiReal.from_decimal(math.cos(phase.decimal_value)),
amplitude * PhiReal.from_decimal(math.sin(phase.decimal_value))
)
network.append(excitation)

return network

def _calculate_excitation_energies(self) -> List[PhiReal]:
"""计算激发能量"""
energies = []
base_energy = PhiReal.from_decimal(1.85) # eV,典型叶绿素激发能

for i in range(self.num_chromophores):
# 能量按φ-结构分布
energy = base_energy * (self.phi ** (-i / 10))
energies.append(energy)

return energies

def _build_coupling_matrix(self) -> PhiMatrix:
"""构建耦合矩阵"""
n = self.num_chromophores
coupling_data = []

for i in range(n):
row = []
for j in range(n):
if i == j:
# 对角元:自能
coupling = self.excitation_energies[i]
else:
# 非对角元:相互作用按距离和φ衰减
distance = abs(i - j)
coupling_strength = PhiReal.from_decimal(0.1) / (self.phi ** distance)
coupling = coupling_strength

row.append(PhiComplex(coupling, PhiReal.zero()))
coupling_data.append(row)

return PhiMatrix(coupling_data)

def quantum_energy_transport(self, initial_excitation: int, target_site: int) -> Tuple[PhiReal, PhiReal]:
"""完整的量子能量传输计算"""
if initial_excitation >= self.num_chromophores or target_site >= self.num_chromophores:
raise ValueError("色素分子索引超出范围")

# 初始化系统波函数
psi_initial = [PhiComplex.zero() for _ in range(self.num_chromophores)]
psi_initial[initial_excitation] = PhiComplex(PhiReal.one(), PhiReal.zero())

# 时间演化参数
time_steps = 100
dt = PhiReal.from_decimal(0.01) # fs

# 演化过程
psi_current = psi_initial[:]
transfer_efficiency = PhiReal.zero()
coherence_time = PhiReal.zero()

for t in range(time_steps):
# 应用哈密顿量演化
psi_next = self._apply_hamiltonian_evolution(psi_current, dt)

# 计算目标位点的占据概率
target_probability = psi_next[target_site].real * psi_next[target_site].real + \
psi_next[target_site].imag * psi_next[target_site].imag

if target_probability.decimal_value > transfer_efficiency.decimal_value:
transfer_efficiency = target_probability
coherence_time = PhiReal.from_decimal(t) * dt

# 考虑环境退相干
psi_current = self._apply_decoherence(psi_next, dt)

return transfer_efficiency, coherence_time

def _apply_hamiltonian_evolution(self, psi: List[PhiComplex], dt: PhiReal) -> List[PhiComplex]:
"""应用哈密顿量时间演化"""
n = len(psi)
psi_evolved = [PhiComplex.zero() for _ in range(n)]

for i in range(n):
for j in range(n):
# H_ij * psi_j * exp(-iE_ij*dt/ħ)
coupling = self.coupling_matrix.data[i][j]
energy_diff = self.excitation_energies[i] - self.excitation_energies[j] if i != j else PhiReal.zero()

# 计算相位因子
phase = energy_diff * dt / PhiReal.from_decimal(0.658) # ħ in eV·fs
cos_phase = PhiReal.from_decimal(math.cos(phase.decimal_value))
sin_phase = PhiReal.from_decimal(math.sin(phase.decimal_value))

# 复数乘法:coupling * psi[j] * exp(-i*phase)
real_part = coupling.real * (psi[j].real * cos_phase + psi[j].imag * sin_phase)
imag_part = coupling.imag * (psi[j].real * cos_phase + psi[j].imag * sin_phase) + \
coupling.real * (psi[j].imag * cos_phase - psi[j].real * sin_phase)

psi_evolved[i] = psi_evolved[i] + PhiComplex(real_part, imag_part)

return psi_evolved

def _apply_decoherence(self, psi: List[PhiComplex], dt: PhiReal) -> List[PhiComplex]:
"""应用环境退相干效应"""
# 退相干时间常数
T2 = PhiReal.from_decimal(100.0) # fs,相干时间
decay_factor = (-dt / T2).exp()

psi_decohered = []
for amplitude in psi:
# 相干性按指数衰减
decohered_amp = PhiComplex(
amplitude.real * decay_factor,
amplitude.imag * decay_factor
)
psi_decohered.append(decohered_amp)

return psi_decohered

class PhiEnzymeCatalysis:
"""φ-酶催化量子隧穿系统"""

def __init__(self, enzyme_type: str):
"""初始化酶催化系统"""
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)
self.enzyme_type = enzyme_type

# 初始化势垒参数
self.barrier_heights = self._initialize_barrier_heights()
self.tunnel_distances = self._calculate_tunnel_distances()
self.reaction_coordinates = self._setup_reaction_coordinates()

def _initialize_barrier_heights(self) -> List[PhiReal]:
"""初始化φ-结构化势垒高度"""
# 势垒高度按φ衰减分布
base_barrier = PhiReal.from_decimal(20.0) # kcal/mol
barriers = []

for n in range(5): # 5个势垒层级
barrier_height = base_barrier * (self.phi ** (-n))
barriers.append(barrier_height)

return barriers

def _calculate_tunnel_distances(self) -> List[PhiReal]:
"""计算隧穿距离"""
# 隧穿距离遵循Fibonacci序列
fibonacci = self._generate_fibonacci(10)
distances = []

for i in range(5):
# 距离单位:Angstrom
distance = PhiReal.from_decimal(fibonacci[i] * 0.1)
distances.append(distance)

return distances

def _generate_fibonacci(self, n: int) -> List[int]:
"""生成Fibonacci数列"""
if n <= 0:
return []
elif n == 1:
return [1]
elif n == 2:
return [1, 1]

fib = [1, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib

def _setup_reaction_coordinates(self) -> List[PhiReal]:
"""设置反应坐标"""
coordinates = []
for i in range(100): # 100个反应坐标点
coord = PhiReal.from_decimal(i * 0.01) # 0到1的区间
coordinates.append(coord)
return coordinates

def calculate_tunneling_probability(self, temperature: PhiReal, substrate_mass: PhiReal) -> PhiReal:
"""计算量子隧穿概率"""
# 物理常数
hbar = PhiReal.from_decimal(1.0546e-34) # J·s
kB = PhiReal.from_decimal(1.381e-23) # J/K
amu_to_kg = PhiReal.from_decimal(1.66e-27) # kg

# 计算总隧穿概率
total_probability = PhiReal.one()

for i, (barrier_height, distance) in enumerate(zip(self.barrier_heights, self.tunnel_distances)):
# 将能量单位从kcal/mol转换为J
barrier_energy_j = barrier_height * PhiReal.from_decimal(6.95e-21)

# 计算有效质量(考虑φ-修正)
effective_mass = substrate_mass * amu_to_kg / (self.phi ** i)

# WKB隧穿概率公式
# P = exp(-2 * sqrt(2m(E-V)) * d / ħ)

# 动能项
kinetic_term = PhiReal.from_decimal(2.0) * effective_mass * barrier_energy_j
momentum = kinetic_term.sqrt()

# 隧穿积分
tunnel_integral = momentum * distance / hbar

# 计算此层的隧穿概率
layer_probability = (-tunnel_integral).exp()

# 累积概率(各层串联)
total_probability = total_probability * layer_probability

return total_probability

def calculate_catalytic_enhancement(self, temperature: PhiReal) -> PhiReal:
"""计算催化增强因子"""
# 无催化反应的Arrhenius因子
uncatalyzed_barrier = PhiReal.from_decimal(25.0) # kcal/mol
kT = PhiReal.from_decimal(0.593) * temperature / PhiReal.from_decimal(298.15) # kcal/mol at T

uncatalyzed_rate = (-uncatalyzed_barrier / kT).exp()

# 有催化反应考虑量子隧穿
substrate_mass = PhiReal.from_decimal(12.0) # 假设碳原子质量
tunneling_prob = self.calculate_tunneling_probability(temperature, substrate_mass)

# 催化反应速率
catalyzed_barrier = self.barrier_heights[0] # 主势垒
classical_rate = (-catalyzed_barrier / kT).exp()
catalyzed_rate = classical_rate * (PhiReal.one() + tunneling_prob)

# 增强因子
enhancement_factor = catalyzed_rate / uncatalyzed_rate

return enhancement_factor

class PhiBirdNavigation:
"""φ-鸟类量子导航系统"""

def __init__(self):
"""初始化量子罗盘系统"""
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)

# 隐花色素量子态参数
self.radical_pair_states = self._initialize_radical_pair_states()
self.magnetic_field_sensitivity = PhiReal.from_decimal(50e-9) # Tesla
self.coherence_time = PhiReal.from_decimal(1e-6) # seconds

def _initialize_radical_pair_states(self) -> Dict[str, PhiBiologicalState]:
"""初始化自由基对量子态"""
states = {}

# 单重态 (Singlet)
singlet_amplitudes = [PhiComplex(PhiReal.one()/self.phi, PhiReal.zero())]
states["singlet"] = PhiBiologicalState(
singlet_amplitudes, ["S"], PhiReal.one(), self.coherence_time
)

# 三重态 (Triplet T0)
triplet_t0_amplitudes = [PhiComplex(PhiReal.one()/(self.phi**2), PhiReal.zero())]
states["triplet_t0"] = PhiBiologicalState(
triplet_t0_amplitudes, ["T0"], PhiReal.one(), self.coherence_time
)

# 三重态 (Triplet T±)
triplet_pm_amplitudes = [
PhiComplex(PhiReal.one()/(self.phi**3), PhiReal.zero()),
PhiComplex(PhiReal.one()/(self.phi**3), PhiReal.zero())
]
states["triplet_pm"] = PhiBiologicalState(
triplet_pm_amplitudes, ["T+", "T-"], PhiReal.one(), self.coherence_time
)

return states

def calculate_magnetic_sensitivity(self, magnetic_field_strength: PhiReal,
field_angle: PhiReal) -> PhiReal:
"""计算磁场敏感性"""
# 塞曼效应下的能级分裂
bohr_magneton = PhiReal.from_decimal(9.274e-24) # J/T
g_factor = PhiReal.from_decimal(2.0)

# 能级分裂
zeeman_splitting = g_factor * bohr_magneton * magnetic_field_strength

# φ-结构化敏感性
phi_sensitivity = self.phi * zeeman_splitting

# 角度相关性
angle_factor = PhiReal.from_decimal(math.cos(field_angle.decimal_value)**2)

sensitivity = phi_sensitivity * angle_factor

return sensitivity

def simulate_quantum_compass(self, earth_magnetic_field: PhiReal,
inclination_angle: PhiReal) -> Dict[str, PhiReal]:
"""模拟量子罗盘导航"""
results = {}

# 计算各个方向的磁场敏感性
directions = ["north", "east", "south", "west"]
angles = [0, math.pi/2, math.pi, 3*math.pi/2]

for direction, angle in zip(directions, angles):
angle_phi = PhiReal.from_decimal(angle)
sensitivity = self.calculate_magnetic_sensitivity(earth_magnetic_field, angle_phi)
results[direction] = sensitivity

# 计算导航精度
max_sensitivity = max(results.values(), key=lambda x: x.decimal_value)
min_sensitivity = min(results.values(), key=lambda x: x.decimal_value)

# 角度分辨率(反比于敏感性差)
sensitivity_ratio = max_sensitivity / (min_sensitivity + PhiReal.from_decimal(1e-20))
angular_resolution = PhiReal.from_decimal(2 * math.pi) / sensitivity_ratio

results["angular_resolution"] = angular_resolution
results["navigation_accuracy"] = PhiReal.one() / angular_resolution

return results

class PhiNeuralQuantumProcessor:
"""φ-神经元量子处理器"""

def __init__(self, microtubule_count: int):
"""初始化神经量子处理器"""
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)
self.microtubule_count = microtubule_count
self.fibonacci = self._generate_fibonacci(microtubule_count + 10)

# 初始化微管量子比特
self.quantum_bits = self._initialize_microtubule_qubits()
self.processing_frequency = self._calculate_processing_frequency()

def _generate_fibonacci(self, n: int) -> List[int]:
"""生成Fibonacci数列"""
if n <= 0:
return []
elif n == 1:
return [1]
elif n == 2:
return [1, 1]

fib = [1, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib

def _initialize_microtubule_qubits(self) -> List[PhiBiologicalState]:
"""初始化微管量子比特"""
qubits = []

for i in range(self.microtubule_count):
# 每个微管包含F_k个二聚体
dimers_count = self.fibonacci[i % len(self.fibonacci)]

# 量子态幅度按φ衰减
amplitudes = []
basis_states = []

for j in range(dimers_count):
amplitude = PhiComplex(
PhiReal.one() / (self.phi ** j),
PhiReal.zero()
)
amplitudes.append(amplitude)
basis_states.append(f"dimer_{j}")

# 创建微管量子态
coherence_time = PhiReal.from_decimal(1e-12) * (self.phi ** i) # picoseconds

qubit = PhiBiologicalState(
amplitudes, basis_states, PhiReal.one(), coherence_time
)
qubits.append(qubit)

return qubits

def _calculate_processing_frequency(self) -> PhiReal:
"""计算处理频率"""
# 基础频率按φ结构化
base_frequency = PhiReal.from_decimal(40.0) # Hz,gamma波频率

# 总处理频率
total_frequency = base_frequency
for i in range(len(self.quantum_bits)):
frequency_component = base_frequency * (self.phi ** i)
total_frequency = total_frequency + frequency_component

return total_frequency

def quantum_information_processing(self, input_pattern: List[int]) -> List[PhiReal]:
"""量子信息处理"""
if len(input_pattern) > self.microtubule_count:
raise ValueError("输入模式超过微管数量")

# 将输入编码为量子态
encoded_states = []
for i, bit in enumerate(input_pattern):
if i < len(self.quantum_bits):
qubit = self.quantum_bits[i]

# 根据输入比特调制量子态
if bit == 1:
# 激发态
modulated_amplitudes = []
for amp in qubit.amplitudes:
modulated_amp = PhiComplex(
amp.real * self.phi,
amp.imag * self.phi
)
modulated_amplitudes.append(modulated_amp)
else:
# 基态
modulated_amplitudes = qubit.amplitudes[:]

encoded_state = PhiBiologicalState(
modulated_amplitudes, qubit.biological_basis,
qubit.normalization, qubit.coherence_time
)
encoded_states.append(encoded_state)

# 量子处理:应用φ-变换
processed_outputs = []
for state in encoded_states:
# 计算处理输出
output_value = PhiReal.zero()

for amp in state.amplitudes:
# 计算量子观测值
probability = amp.real * amp.real + amp.imag * amp.imag
contribution = probability * self.phi
output_value = output_value + contribution

processed_outputs.append(output_value)

return processed_outputs

def consciousness_threshold_check(self, neural_activity: List[PhiReal]) -> bool:
"""检查意识阈值"""
# 计算总量子活动
total_activity = PhiReal.zero()
for activity in neural_activity:
total_activity = total_activity + activity

# φ-意识阈值
consciousness_threshold = self.phi ** 10 # φ^10 ≈ 122.97

return total_activity.decimal_value > consciousness_threshold.decimal_value

class PhiDNAQuantumErrorCorrection:
"""φ-DNA量子纠错系统"""

def __init__(self, k: int, n: int):
"""初始化[k,n] Fibonacci纠错码"""
self.k = k # 信息位数
self.n = n # 码字长度
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)

# 生成Fibonacci数列
self.fibonacci = self._generate_fibonacci(max(k, n) + 10)

# 验证k和n是Fibonacci数
if k not in self.fibonacci[:20] or n not in self.fibonacci[:20]:
raise ValueError(f"k={k}和n={n}必须是Fibonacci数")

# 初始化DNA编码映射
self.nucleotide_to_phi = {
NucleotideType.ADENINE: PhiReal.from_decimal(1.0), # φ⁰
NucleotideType.THYMINE: self.phi, # φ¹
NucleotideType.GUANINE: self.phi ** 2, # φ²
NucleotideType.CYTOSINE: self.phi ** 3 # φ³
}

self.phi_to_nucleotide = {v.decimal_value: k for k, v in self.nucleotide_to_phi.items()}

def _generate_fibonacci(self, n: int) -> List[int]:
"""生成Fibonacci数列"""
if n <= 0:
return []
elif n == 1:
return [1]
elif n == 2:
return [1, 1]

fib = [1, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib

def encode_dna_sequence(self, dna_sequence: List[NucleotideType]) -> ZeckendorfBioCode:
"""将DNA序列编码为Zeckendorf码"""
if len(dna_sequence) > self.k:
raise ValueError(f"DNA序列长度{len(dna_sequence)}超过k={self.k}")

# 将DNA序列转换为φ值
phi_values = []
for nucleotide in dna_sequence:
phi_value = self.nucleotide_to_phi[nucleotide]
phi_values.append(phi_value.decimal_value)

# 转换为单个数值(加权求和)
total_value = 0.0
for i, phi_val in enumerate(phi_values):
total_value += phi_val * (4 ** i) # 4进制权重

# 转换为Zeckendorf表示
zeck_coeffs = self._to_zeckendorf(int(total_value * 1000)) # 放大1000倍避免小数

# 扩展到码字长度并添加纠错位
extended_coeffs = zeck_coeffs + [0] * (self.n - len(zeck_coeffs))
extended_coeffs = extended_coeffs[:self.n]

# 添加φ-结构化奇偶校验
parity_bits = self._calculate_phi_parity(extended_coeffs)

# 将奇偶校验位嵌入
for i, parity in enumerate(parity_bits):
if self.n - 1 - i >= 0:
extended_coeffs[self.n - 1 - i] = parity

return ZeckendorfBioCode(extended_coeffs, f"DNA sequence of length {len(dna_sequence)}")

def _calculate_phi_parity(self, coeffs: List[int]) -> List[int]:
"""计算φ-结构化奇偶校验位"""
parity_bits = []

# 计算多个φ-加权奇偶校验
for level in range(min(3, len(coeffs))): # 最多3个校验位
weighted_sum = 0
for i, coeff in enumerate(coeffs[:-3]): # 排除校验位位置
weight = int((self.phi ** (i + level)).decimal_value) % 2
weighted_sum += coeff * weight

parity_bits.append(weighted_sum % 2)

return parity_bits

def decode_dna_sequence(self, code: ZeckendorfBioCode) -> Tuple[List[NucleotideType], bool, int]:
"""解码Zeckendorf码为DNA序列"""
coeffs = code.fibonacci_coefficients

# 提取奇偶校验位
info_coeffs = coeffs[:-3] if len(coeffs) >= 3 else coeffs
received_parity = coeffs[-3:] if len(coeffs) >= 3 else []

# 检查奇偶校验
calculated_parity = self._calculate_phi_parity(info_coeffs + [0, 0, 0])
errors_detected = 0

for i, (calc, recv) in enumerate(zip(calculated_parity, received_parity)):
if calc != recv:
errors_detected += 1

# 尝试纠错(简单的单错纠正)
corrected_coeffs = info_coeffs[:]
if errors_detected == 1:
# 定位错误位置并纠正
error_position = self._locate_error_position(info_coeffs, calculated_parity, received_parity)
if 0 <= error_position < len(corrected_coeffs):
corrected_coeffs[error_position] = 1 - corrected_coeffs[error_position]

# 转换回数值
total_value = self._from_zeckendorf(corrected_coeffs) / 1000.0

# 转换回DNA序列
dna_sequence = []
remaining_value = total_value

while remaining_value > 0.001 and len(dna_sequence) < self.k: # 避免浮点误差
# 提取最高位
digit = int(remaining_value) % 4
remaining_value = (remaining_value - digit) / 4

# 转换为核苷酸
if digit == 0:
nucleotide = NucleotideType.ADENINE
elif digit == 1:
nucleotide = NucleotideType.THYMINE
elif digit == 2:
nucleotide = NucleotideType.GUANINE
else:
nucleotide = NucleotideType.CYTOSINE

dna_sequence.insert(0, nucleotide) # 插入到前面

success = (errors_detected <= 1) # 最多能纠正1个错误

return dna_sequence, success, errors_detected

def _locate_error_position(self, info_coeffs: List[int],
calculated_parity: List[int],
received_parity: List[int]) -> int:
"""定位错误位置"""
# 使用汉明码原理定位错误
error_syndrome = 0
for i, (calc, recv) in enumerate(zip(calculated_parity, received_parity)):
if calc != recv:
error_syndrome += (i + 1)

# 完整的错误定位算法(基于Hamming码理论)
if error_syndrome > 0:
# 使用多个校验位的交集来精确定位错误
error_pattern = 0
for i, (calc, recv) in enumerate(zip(calculated_parity, received_parity)):
if calc != recv:
error_pattern |= (1 << i)

# 映射错误模式到具体位置
if error_pattern < len(info_coeffs):
return error_pattern
else:
return (error_syndrome - 1) % len(info_coeffs)

return -1 # 无错误

def _to_zeckendorf(self, n: int) -> List[int]:
"""将整数转换为Zeckendorf表示"""
if n == 0:
return [0]

coeffs = []
fib_index = 0

# 找到最大的不超过n的Fibonacci数
while fib_index < len(self.fibonacci) and self.fibonacci[fib_index] <= n:
fib_index += 1
fib_index -= 1

# 贪心算法构造Zeckendorf表示
coeffs = [0] * (fib_index + 1)
remaining = n

for i in range(fib_index, -1, -1):
if remaining >= self.fibonacci[i]:
coeffs[i] = 1
remaining -= self.fibonacci[i]

return coeffs

def _from_zeckendorf(self, coeffs: List[int]) -> int:
"""从Zeckendorf表示转换为整数"""
value = 0
for i, coeff in enumerate(coeffs):
if i < len(self.fibonacci):
value += coeff * self.fibonacci[i]
return value

class PhiBiologicalClockSystem:
"""φ-生物钟量子振荡系统"""

def __init__(self):
"""初始化生物钟系统"""
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)

# 基础昼夜节律参数
self.base_period = PhiReal.from_decimal(24.0) # 小时
self.phi_harmonic_periods = self._calculate_phi_harmonics()

# 分子钟组件
self.mrna_oscillators = self._initialize_mrna_oscillators()
self.protein_oscillators = self._initialize_protein_oscillators()

def _calculate_phi_harmonics(self) -> List[PhiReal]:
"""计算φ-谐频周期"""
harmonics = []

for m in range(-3, 4): # φ^(-3) 到 φ^3
period = self.base_period * (self.phi ** m)
harmonics.append(period)

return harmonics

def _initialize_mrna_oscillators(self) -> List[PhiBiologicalState]:
"""初始化mRNA振荡器"""
oscillators = []

# 核心时钟基因的mRNA振荡
clock_genes = ["Per1", "Per2", "Cry1", "Cry2", "Clock", "Bmal1"]

for i, gene in enumerate(clock_genes):
# 振荡幅度按φ衰减
amplitude = PhiReal.one() / (self.phi ** i)

# 相位按φ结构分布
phase = PhiReal.from_decimal(2 * math.pi * i / len(clock_genes))

# 创建振荡态
amplitudes = [PhiComplex(amplitude, PhiReal.zero())]
coherence_time = self.base_period / self.phi # 转录周期

oscillator = PhiBiologicalState(
amplitudes, [gene], PhiReal.one(), coherence_time
)
oscillators.append(oscillator)

return oscillators

def _initialize_protein_oscillators(self) -> List[PhiBiologicalState]:
"""初始化蛋白质振荡器"""
oscillators = []

proteins = ["PER1", "PER2", "CRY1", "CRY2", "CLOCK", "BMAL1"]

for i, protein in enumerate(proteins):
# 蛋白质振荡滞后于mRNA
phase_delay = PhiReal.from_decimal(math.pi / self.phi.decimal_value)

# 衰减时间常数
decay_constant = self.base_period * (self.phi ** 2)

amplitudes = [PhiComplex(
PhiReal.one() / (self.phi ** (i + 1)),
PhiReal.zero()
)]

oscillator = PhiBiologicalState(
amplitudes, [protein], PhiReal.one(), decay_constant
)
oscillators.append(oscillator)

return oscillators

def simulate_circadian_oscillation(self, time_hours: PhiReal) -> Dict[str, PhiReal]:
"""模拟昼夜节律振荡"""
results = {}

# 计算主振荡
main_phase = PhiReal.from_decimal(2 * math.pi) * time_hours / self.base_period
main_oscillation = PhiReal.from_decimal(math.sin(main_phase.decimal_value))

results["main_rhythm"] = main_oscillation

# 计算φ-谐频分量
total_harmonic = PhiReal.zero()
for i, period in enumerate(self.phi_harmonic_periods):
harmonic_phase = PhiReal.from_decimal(2 * math.pi) * time_hours / period
harmonic_amplitude = PhiReal.one() / (self.phi ** abs(i - 3)) # 中心化

harmonic_component = harmonic_amplitude * PhiReal.from_decimal(
math.sin(harmonic_phase.decimal_value)
)
total_harmonic = total_harmonic + harmonic_component

results[f"harmonic_{i}"] = harmonic_component

results["total_harmonic"] = total_harmonic

# 计算分子振荡器
mrna_activity = PhiReal.zero()
for i, oscillator in enumerate(self.mrna_oscillators):
# mRNA转录振荡
mrna_phase = main_phase * (self.phi ** (i - 2))
mrna_level = oscillator.amplitudes[0].real * PhiReal.from_decimal(
math.sin(mrna_phase.decimal_value)
)
mrna_activity = mrna_activity + mrna_level

results["mrna_activity"] = mrna_activity

protein_activity = PhiReal.zero()
for i, oscillator in enumerate(self.protein_oscillators):
# 蛋白质振荡(滞后)
protein_phase = main_phase * (self.phi ** (i - 2)) - PhiReal.from_decimal(math.pi / 4)
protein_level = oscillator.amplitudes[0].real * PhiReal.from_decimal(
math.sin(protein_phase.decimal_value)
)
protein_activity = protein_activity + protein_level

results["protein_activity"] = protein_activity

# 计算反馈强度
feedback_strength = mrna_activity * protein_activity / (self.phi ** 2)
results["feedback_strength"] = feedback_strength

return results

def calculate_phase_locking(self, external_zeitgeber_period: PhiReal) -> PhiReal:
"""计算与外部时间给予者的相位锁定"""
# 计算频率差
internal_frequency = PhiReal.from_decimal(2 * math.pi) / self.base_period
external_frequency = PhiReal.from_decimal(2 * math.pi) / external_zeitgeber_period

frequency_difference = external_frequency - internal_frequency

# φ-结构化相位锁定范围
locking_range = internal_frequency / (self.phi ** 2)

# 计算相位锁定强度
if frequency_difference.decimal_value <= locking_range.decimal_value:
locking_strength = PhiReal.one() - frequency_difference / locking_range
else:
locking_strength = PhiReal.zero()

return locking_strength

def verify_biological_self_reference_property(bio_processor: PhiPhotosynthesisSystem) -> bool:
"""验证生物系统的自指性质:B = B[B]"""

# 测试光合系统的自指性
initial_site = 0
target_site = bio_processor.num_chromophores - 1

# 第一次能量传输:B
efficiency1, time1 = bio_processor.quantum_energy_transport(initial_site, target_site)

# 第二次传输:B[B] - 将目标作为新的初始位点
efficiency2, time2 = bio_processor.quantum_energy_transport(target_site, initial_site)

# 验证自指性质
# 1. 系统必须能够处理自己的输出
processing_successful = efficiency2.decimal_value > 0

# 2. 相干时间必须保持或增加(根据唯一公理)
coherence_maintained = time2.decimal_value >= time1.decimal_value * 0.9

# 3. 传输效率应体现φ-结构
phi_structure_preserved = abs(efficiency1.decimal_value / efficiency2.decimal_value -
(1 + math.sqrt(5))/2) < 0.1

return processing_successful and coherence_maintained and phi_structure_preserved

# 完整的φ-生物量子效应验证函数
def complete_phi_biological_quantum_verification() -> Dict[str, bool]:
"""完整验证φ-生物量子效应系统的所有核心性质"""

results = {}

try:
# 1. 验证φ-光合作用系统
photosystem = PhiPhotosynthesisSystem(8)
efficiency, coherence_time = photosystem.quantum_energy_transport(0, 7)
results["photosynthesis_efficiency"] = efficiency.decimal_value > 0.3 # 预期≈38.2%
results["photosynthesis_coherence"] = coherence_time.decimal_value > 0

# 2. 验证φ-酶催化系统
enzyme = PhiEnzymeCatalysis("test_enzyme")
temperature = PhiReal.from_decimal(310.0) # 体温37°C
enhancement = enzyme.calculate_catalytic_enhancement(temperature)
results["enzyme_catalysis"] = enhancement.decimal_value > 1.0

# 3. 验证φ-鸟类导航系统
bird_nav = PhiBirdNavigation()
earth_field = PhiReal.from_decimal(50e-6) # 地磁场强度
inclination = PhiReal.from_decimal(math.pi / 4)
nav_results = bird_nav.simulate_quantum_compass(earth_field, inclination)
results["bird_navigation"] = nav_results["navigation_accuracy"].decimal_value > 1.0

# 4. 验证φ-神经量子处理
neural_processor = PhiNeuralQuantumProcessor(5)
test_pattern = [1, 0, 1, 1, 0]
neural_output = neural_processor.quantum_information_processing(test_pattern)
consciousness_active = neural_processor.consciousness_threshold_check(neural_output)
results["neural_processing"] = len(neural_output) > 0
results["consciousness_threshold"] = isinstance(consciousness_active, bool)

# 5. 验证φ-DNA纠错系统
dna_corrector = PhiDNAQuantumErrorCorrection(3, 5) # F_4=3, F_5=5
test_dna = [NucleotideType.ADENINE, NucleotideType.THYMINE, NucleotideType.GUANINE]
encoded = dna_corrector.encode_dna_sequence(test_dna)
decoded, success, errors = dna_corrector.decode_dna_sequence(encoded)
results["dna_error_correction"] = success and len(decoded) >= len(test_dna)

# 6. 验证φ-生物钟系统
bio_clock = PhiBiologicalClockSystem()
time_point = PhiReal.from_decimal(12.0) # 正午
oscillation_data = bio_clock.simulate_circadian_oscillation(time_point)
results["biological_clock"] = "main_rhythm" in oscillation_data

# 7. 验证生物系统的自指性
results["biological_self_reference"] = verify_biological_self_reference_property(photosystem)

# 8. 验证φ-结构一致性
phi_check = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)
results["phi_structure_consistency"] = abs(phi_check.decimal_value - 1.618) < 0.001

except Exception as e:
results["exception"] = f"验证过程中发生异常: {str(e)}"

return results