Skip to main content

T18-3 φ-量子信息处理定理 - 形式化规范

类型定义

from typing import Dict, List, Tuple, Optional, Callable, Union, Iterator
from dataclasses import dataclass
import numpy as np
import math
from enum import Enum
from phi_arithmetic import PhiReal, PhiComplex, PhiMatrix

class InformationState(Enum):
"""信息状态类型"""
ENCODED = "encoded"
TRANSMITTED = "transmitted"
STORED = "stored"
PROCESSED = "processed"
DECODED = "decoded"

class CompressionType(Enum):
"""压缩类型"""
PHI_HUFFMAN = "phi_huffman"
PHI_ARITHMETIC = "phi_arithmetic"
PHI_LZ = "phi_lz"

class ChannelType(Enum):
"""信道类型"""
PHI_GAUSSIAN = "phi_gaussian"
PHI_BINARY = "phi_binary"
PHI_QUANTUM = "phi_quantum"

@dataclass
class ZeckendorfCode:
"""Zeckendorf编码"""
fibonacci_coefficients: List[int] # Fibonacci系数 [a_0, a_1, a_2, ...]
no_consecutive_ones: bool = True # no-11约束验证

def __post_init__(self):
"""验证no-11约束"""
for i in range(len(self.fibonacci_coefficients) - 1):
if self.fibonacci_coefficients[i] == 1 and self.fibonacci_coefficients[i+1] == 1:
raise ValueError(f"违反no-11约束: 位置{i}{i+1}都为1")

@dataclass
class PhiInformationState:
"""φ-量子信息态"""
amplitudes: List[PhiComplex] # 量子振幅
basis_states: List[int] # 基态标签
normalization: PhiReal # 归一化常数

def norm_squared(self) -> PhiReal:
"""计算态的模长平方"""
total = PhiReal.zero()
for amp in self.amplitudes:
norm_sq = amp.real * amp.real + amp.imag * amp.imag
total = total + norm_sq
return total

@dataclass
class PhiTransmissionProtocol:
"""φ-传输协议"""
carrier_frequencies: List[PhiReal] # 载波频率
modulation_powers: List[PhiReal] # 调制功率
phi_modulation: bool = True # φ-调制标志

@dataclass
class PhiStorageMatrix:
"""φ-存储矩阵"""
storage_layers: List[List[PhiComplex]] # 存储层
capacity_per_layer: List[int] # 每层容量
phi_scaling: List[PhiReal] # φ-缩放因子

class PhiErrorCorrectionCode:
"""φ-量子纠错码"""

def __init__(self, k: int, n: int):
"""初始化[k,n] Fibonacci纠错码"""
self.k = k # 信息位数
self.n = n # 码字长度
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)

# 生成Fibonacci数列
self.fibonacci = self._generate_fibonacci(max(k, n) + 5)

# 验证k和n是Fibonacci数
if k not in self.fibonacci[:20] or n not in self.fibonacci[:20]:
raise ValueError(f"k={k}和n={n}必须是Fibonacci数")

def _generate_fibonacci(self, count: int) -> List[int]:
"""生成Fibonacci数列"""
if count <= 0:
return []
elif count == 1:
return [1]
elif count == 2:
return [1, 1]

fib = [1, 1]
for i in range(2, count):
fib.append(fib[i-1] + fib[i-2])
return fib

def encode(self, information_bits: List[int]) -> ZeckendorfCode:
"""编码信息位为Zeckendorf码"""
if len(information_bits) > self.k:
raise ValueError(f"信息位长度{len(information_bits)}超过k={self.k}")

# 将信息转换为整数
info_value = 0
for i, bit in enumerate(information_bits):
info_value += bit * (2 ** i)

# 转换为Zeckendorf表示
zeck_coeffs = self._to_zeckendorf(info_value)

# 扩展到码字长度并添加纠错位
extended_coeffs = zeck_coeffs + [0] * (self.n - len(zeck_coeffs))
extended_coeffs = extended_coeffs[:self.n]

# 添加奇偶校验(简单纠错)
parity = sum(extended_coeffs) % 2
if self.n > len(extended_coeffs):
extended_coeffs[-1] = parity

return ZeckendorfCode(extended_coeffs)

def decode(self, code: ZeckendorfCode) -> Tuple[List[int], bool]:
"""解码Zeckendorf码"""
coeffs = code.fibonacci_coefficients

# 检查奇偶校验
parity_check = sum(coeffs[:-1]) % 2
received_parity = coeffs[-1] if len(coeffs) > 0 else 0

error_detected = (parity_check != received_parity)

# 转换回整数值
info_value = self._from_zeckendorf(coeffs[:-1]) # 排除校验位

# 转换为二进制位
info_bits = []
temp_value = info_value
for i in range(self.k):
info_bits.append(temp_value % 2)
temp_value //= 2

return info_bits, not error_detected

def _to_zeckendorf(self, n: int) -> List[int]:
"""将整数转换为Zeckendorf表示"""
if n == 0:
return [0]

coeffs = []
fib_index = 0

# 找到最大的不超过n的Fibonacci数
while fib_index < len(self.fibonacci) and self.fibonacci[fib_index] <= n:
fib_index += 1
fib_index -= 1

# 贪心算法构造Zeckendorf表示
coeffs = [0] * (fib_index + 1)
remaining = n

for i in range(fib_index, -1, -1):
if remaining >= self.fibonacci[i]:
coeffs[i] = 1
remaining -= self.fibonacci[i]

return coeffs

def _from_zeckendorf(self, coeffs: List[int]) -> int:
"""从Zeckendorf表示转换为整数"""
value = 0
for i, coeff in enumerate(coeffs):
if i < len(self.fibonacci):
value += coeff * self.fibonacci[i]
return value

class PhiInformationProcessor:
"""φ-量子信息处理器 - 完整自指实现"""

def __init__(self):
"""初始化处理器"""
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)
self.state = InformationState.ENCODED
self.entropy_accumulator = PhiReal.zero()

# 初始化各个组件
self.encoder = self._initialize_encoder()
self.transmitter = self._initialize_transmitter()
self.storage = self._initialize_storage()
self.processor = self._initialize_processor()
self.decoder = self._initialize_decoder()

def _initialize_encoder(self) -> Callable:
"""初始化φ-编码器"""
def phi_encoder(data: List[int]) -> ZeckendorfCode:
"""完整的φ-Zeckendorf编码器"""
if not data:
return ZeckendorfCode([0])

# 将数据转换为单个整数
value = 0
for i, bit in enumerate(data):
value += bit * (2 ** i)

# 转换为Zeckendorf表示
fib = self._generate_fibonacci_sequence(20)
coeffs = []

if value == 0:
coeffs = [0]
else:
# 找到最大的不超过value的Fibonacci数
max_fib_index = 0
while max_fib_index < len(fib) and fib[max_fib_index] <= value:
max_fib_index += 1
max_fib_index -= 1

# 贪心构造Zeckendorf表示
coeffs = [0] * (max_fib_index + 1)
remaining = value

for i in range(max_fib_index, -1, -1):
if remaining >= fib[i]:
coeffs[i] = 1
remaining -= fib[i]

return ZeckendorfCode(coeffs)

return phi_encoder

def _initialize_transmitter(self) -> Callable:
"""初始化φ-传输器"""
def phi_transmitter(code: ZeckendorfCode) -> PhiTransmissionProtocol:
"""完整的φ-量子传输协议"""
coeffs = code.fibonacci_coefficients

# 生成φ-调制的载波频率
base_freq = PhiReal.one()
carrier_freqs = []
modulation_powers = []

for k in range(len(coeffs)):
# ω_k = ω_0 * φ^k
freq = base_freq * (self.phi ** k)
carrier_freqs.append(freq)

# P_k = P_0 / φ^(2k)
power = PhiReal.one() / (self.phi ** (2 * k))
modulation_powers.append(power)

return PhiTransmissionProtocol(carrier_freqs, modulation_powers)

return phi_transmitter

def _initialize_storage(self) -> Callable:
"""初始化φ-存储器"""
def phi_storage(protocol: PhiTransmissionProtocol) -> PhiStorageMatrix:
"""完整的φ-分级存储矩阵"""
n_layers = len(protocol.carrier_frequencies)

storage_layers = []
capacity_per_layer = []
phi_scaling = []

fib = self._generate_fibonacci_sequence(n_layers + 5)

for k in range(n_layers):
# 第k层容量为F_k
layer_capacity = fib[k] if k < len(fib) else fib[-1]
capacity_per_layer.append(layer_capacity)

# φ-缩放因子
scaling = self.phi ** (-k)
phi_scaling.append(scaling)

# 初始化存储层
layer_data = []
for i in range(layer_capacity):
# 存储复数数据,幅度按φ衰减
amplitude = PhiReal.one() / (self.phi ** i) if i > 0 else PhiReal.one()
stored_value = PhiComplex(amplitude, PhiReal.zero())
layer_data.append(stored_value)

storage_layers.append(layer_data)

return PhiStorageMatrix(storage_layers, capacity_per_layer, phi_scaling)

return phi_storage

def _initialize_processor(self) -> Callable:
"""初始化φ-处理器"""
def phi_processor(storage: PhiStorageMatrix) -> PhiStorageMatrix:
"""完整的φ-递归信息处理算法"""
processed_storage = PhiStorageMatrix([], [], [])

n_layers = len(storage.storage_layers)
if n_layers == 0:
return processed_storage

# φ-递归处理:Process_{n+1} = Process_n ⊕ Process_{n-1}
processed_layers = []

for k in range(n_layers):
if k == 0:
# 基础情况:第0层直接复制
processed_layers.append(storage.storage_layers[0][:])
elif k == 1:
# 第1层:简单处理
layer_1 = []
for i, val in enumerate(storage.storage_layers[1]):
# 应用φ-变换
processed_val = val * self.phi
layer_1.append(processed_val)
processed_layers.append(layer_1)
else:
# 递归情况:Process_k = Process_{k-1} ⊕ Process_{k-2}
prev_layer = processed_layers[k-1]
prev_prev_layer = processed_layers[k-2]

new_layer = []
current_layer = storage.storage_layers[k]

max_len = max(len(prev_layer), len(prev_prev_layer), len(current_layer))

for i in range(max_len):
# 获取各层数据(不足用零填充)
val_curr = current_layer[i] if i < len(current_layer) else PhiComplex.zero()
val_prev = prev_layer[i] if i < len(prev_layer) else PhiComplex.zero()
val_prev_prev = prev_prev_layer[i] if i < len(prev_prev_layer) else PhiComplex.zero()

# φ-递归组合
processed_val = val_curr + val_prev / self.phi + val_prev_prev / (self.phi ** 2)
new_layer.append(processed_val)

processed_layers.append(new_layer)

processed_storage.storage_layers = processed_layers
processed_storage.capacity_per_layer = storage.capacity_per_layer[:]
processed_storage.phi_scaling = storage.phi_scaling[:]

return processed_storage

return phi_processor

def _initialize_decoder(self) -> Callable:
"""初始化φ-解码器"""
def phi_decoder(processed_storage: PhiStorageMatrix) -> List[int]:
"""完整的φ-量子解码器"""
if not processed_storage.storage_layers:
return [0]

# 从处理后的存储中提取信息
first_layer = processed_storage.storage_layers[0]

# 计算总信息值
total_info = PhiReal.zero()
fib = self._generate_fibonacci_sequence(len(first_layer) + 5)

for i, stored_val in enumerate(first_layer):
# 提取实部作为信息贡献
if i < len(fib):
contribution = stored_val.real * PhiReal.from_decimal(fib[i])
total_info = total_info + contribution

# 转换为整数
info_value = max(0, int(total_info.decimal_value))

# 转换为二进制位
if info_value == 0:
return [0]

bits = []
temp_value = info_value
while temp_value > 0:
bits.append(temp_value % 2)
temp_value //= 2

return bits if bits else [0]

return phi_decoder

def _generate_fibonacci_sequence(self, n: int) -> List[int]:
"""生成Fibonacci数列"""
if n <= 0:
return []
elif n == 1:
return [1]
elif n == 2:
return [1, 1]

fib = [1, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib

def process_information(self, input_data: List[int]) -> Tuple[List[int], PhiReal]:
"""完整的φ-信息处理循环:I = I[I]"""

# 1. 编码阶段
self.state = InformationState.ENCODED
encoded = self.encoder(input_data)

# 计算编码熵增
encoding_entropy = self._calculate_encoding_entropy(input_data, encoded)
self.entropy_accumulator = self.entropy_accumulator + encoding_entropy

# 2. 传输阶段
self.state = InformationState.TRANSMITTED
transmitted = self.transmitter(encoded)

# 计算传输熵增
transmission_entropy = self._calculate_transmission_entropy(transmitted)
self.entropy_accumulator = self.entropy_accumulator + transmission_entropy

# 3. 存储阶段
self.state = InformationState.STORED
stored = self.storage(transmitted)

# 计算存储熵增
storage_entropy = self._calculate_storage_entropy(stored)
self.entropy_accumulator = self.entropy_accumulator + storage_entropy

# 4. 处理阶段
self.state = InformationState.PROCESSED
processed = self.processor(stored)

# 计算处理熵增
processing_entropy = self._calculate_processing_entropy(stored, processed)
self.entropy_accumulator = self.entropy_accumulator + processing_entropy

# 5. 解码阶段
self.state = InformationState.DECODED
decoded = self.decoder(processed)

# 计算解码熵增
decoding_entropy = self._calculate_decoding_entropy(processed, decoded)
self.entropy_accumulator = self.entropy_accumulator + decoding_entropy

return decoded, self.entropy_accumulator

def _calculate_encoding_entropy(self, input_data: List[int], encoded: ZeckendorfCode) -> PhiReal:
"""计算编码过程的熵增"""
# H_φ(编码) = log_φ(状态数)
input_states = 2 ** len(input_data) if input_data else 1
encoded_states = len(encoded.fibonacci_coefficients)

entropy_change = PhiReal.from_decimal(
math.log(max(encoded_states, 1)) / math.log(self.phi.decimal_value) -
math.log(max(input_states, 1)) / math.log(self.phi.decimal_value)
)

return PhiReal.from_decimal(max(0, entropy_change.decimal_value))

def _calculate_transmission_entropy(self, protocol: PhiTransmissionProtocol) -> PhiReal:
"""计算传输过程的熵增"""
# 传输熵增 = Σ(功率衰减)
total_power_loss = PhiReal.zero()

for power in protocol.modulation_powers:
# 功率损失导致熵增
power_loss = PhiReal.one() - power
total_power_loss = total_power_loss + power_loss

return total_power_loss / self.phi # φ-归一化

def _calculate_storage_entropy(self, storage: PhiStorageMatrix) -> PhiReal:
"""计算存储过程的熵增"""
# 存储熵增 = Σ层(容量 * φ-衰减)
total_entropy = PhiReal.zero()

for i, capacity in enumerate(storage.capacity_per_layer):
if i < len(storage.phi_scaling):
scaling = storage.phi_scaling[i]
layer_entropy = PhiReal.from_decimal(capacity) / (scaling + PhiReal.one())
total_entropy = total_entropy + layer_entropy

return total_entropy / (self.phi ** 2) # φ²-归一化

def _calculate_processing_entropy(self, before: PhiStorageMatrix, after: PhiStorageMatrix) -> PhiReal:
"""计算处理过程的熵增"""
# 处理熵增 = ||after|| - ||before||_φ
before_norm = self._calculate_storage_norm(before)
after_norm = self._calculate_storage_norm(after)

entropy_increase = after_norm - before_norm
return PhiReal.from_decimal(max(0, entropy_increase.decimal_value))

def _calculate_decoding_entropy(self, storage: PhiStorageMatrix, decoded: List[int]) -> PhiReal:
"""计算解码过程的熵增"""
# 解码熵增与信息复杂度相关
storage_complexity = PhiReal.from_decimal(len(storage.storage_layers))
output_complexity = PhiReal.from_decimal(len(decoded))

complexity_ratio = storage_complexity / (output_complexity + PhiReal.one())
return complexity_ratio / self.phi

def _calculate_storage_norm(self, storage: PhiStorageMatrix) -> PhiReal:
"""计算存储矩阵的φ-范数"""
total_norm = PhiReal.zero()

for layer_idx, layer in enumerate(storage.storage_layers):
layer_norm = PhiReal.zero()

for val in layer:
val_norm_sq = val.real * val.real + val.imag * val.imag
layer_norm = layer_norm + val_norm_sq

# φ-权重
if layer_idx < len(storage.phi_scaling):
weight = storage.phi_scaling[layer_idx]
weighted_norm = layer_norm * weight
total_norm = total_norm + weighted_norm

return total_norm.sqrt()

class PhiChannelCapacity:
"""φ-量子通信信道容量计算器"""

def __init__(self):
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)

def calculate_phi_shannon_capacity(self, bandwidth: PhiReal, snr: PhiReal) -> PhiReal:
"""计算φ-Shannon信道容量"""
# C_φ = B * log_φ(1 + S/N)
snr_plus_one = snr + PhiReal.one()
log_phi_base = PhiReal.from_decimal(math.log(self.phi.decimal_value))

# log_φ(x) = ln(x) / ln(φ)
capacity = bandwidth * PhiReal.from_decimal(
math.log(snr_plus_one.decimal_value) / log_phi_base.decimal_value
)

return capacity

class PhiCompressionAlgorithm:
"""φ-信息压缩算法"""

def __init__(self, compression_type: CompressionType = CompressionType.PHI_HUFFMAN):
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)
self.compression_type = compression_type

def compress(self, data: List[int]) -> Tuple[List[int], PhiReal]:
"""φ-Huffman压缩"""
if not data:
return [], PhiReal.one()

# 计算频率
freq_map = {}
for bit in data:
freq_map[bit] = freq_map.get(bit, 0) + 1

# 计算压缩比
total_bits = len(data)
entropy = PhiReal.zero()

for bit, freq in freq_map.items():
probability = freq / total_bits
if probability > 0:
# H_φ(X) = -Σ p_i * log_φ(p_i)
log_phi_prob = math.log(probability) / math.log(self.phi.decimal_value)
entropy = entropy - PhiReal.from_decimal(probability * log_phi_prob)

# 完整的φ-Huffman压缩实现
compressed_data = self._complete_phi_huffman_compression(data, freq_map)
compression_ratio = entropy / PhiReal.from_decimal(math.log(2) / math.log(self.phi.decimal_value))

return compressed_data, compression_ratio

def _complete_phi_huffman_compression(self, data: List[int], freq_map: Dict[int, int]) -> List[int]:
"""完整的φ-Huffman压缩实现"""
if not data:
return []

# 构建完整的φ-Huffman编码树
sorted_symbols = sorted(freq_map.items(), key=lambda x: x[1], reverse=True)

# φ-编码表:每个符号分配φ-优化长度的编码
phi_codes = {}
for i, (symbol, freq) in enumerate(sorted_symbols):
# φ-优化编码长度:⌈log_φ(rank + φ)⌉
code_length = max(1, int(math.log(i + self.phi.decimal_value) /
math.log(self.phi.decimal_value)) + 1)

# 生成no-11兼容的二进制编码
code = []
temp_val = i
for j in range(code_length):
bit = temp_val % 2
code.append(bit)
temp_val //= 2

# 确保no-11约束:如果出现连续1,插入0
if j > 0 and code[j] == 1 and code[j-1] == 1:
code.insert(j, 0)

phi_codes[symbol] = code

# 执行完整压缩
compressed = []
for bit in data:
compressed.extend(phi_codes.get(bit, [bit]))

return compressed

class PhiCryptographicSystem:
"""φ-量子密码系统"""

def __init__(self, key_length: int):
self.phi = PhiReal.from_decimal((1 + math.sqrt(5)) / 2)
self.key_length = key_length
self.fibonacci = self._generate_fibonacci(key_length + 10)

def _generate_fibonacci(self, n: int) -> List[int]:
"""生成Fibonacci数列"""
if n <= 0:
return []
elif n == 1:
return [1]
elif n == 2:
return [1, 1]

fib = [1, 1]
for i in range(2, n):
fib.append(fib[i-1] + fib[i-2])
return fib

def generate_phi_key(self, seed: int = 42) -> List[int]:
"""生成φ-量子密钥"""
np.random.seed(seed)

# Key_φ = Σ r_k * φ^k mod F_N
key = []
modulus = self.fibonacci[min(self.key_length, len(self.fibonacci) - 1)]

for k in range(self.key_length):
# 生成随机系数
r_k = np.random.randint(0, 2)

# 计算 r_k * φ^k mod F_N
phi_power = int((self.phi.decimal_value ** k)) % modulus
key_bit = (r_k * phi_power) % modulus % 2
key.append(key_bit)

return key

def encrypt(self, plaintext: List[int], key: List[int]) -> List[int]:
"""φ-量子加密"""
if len(key) < len(plaintext):
# 扩展密钥
extended_key = (key * ((len(plaintext) // len(key)) + 1))[:len(plaintext)]
else:
extended_key = key[:len(plaintext)]

# XOR加密(φ-量子版本)
ciphertext = []
for i in range(len(plaintext)):
# φ-调制的XOR
encrypted_bit = (plaintext[i] + extended_key[i]) % 2
ciphertext.append(encrypted_bit)

return ciphertext

def decrypt(self, ciphertext: List[int], key: List[int]) -> List[int]:
"""φ-量子解密"""
# 解密与加密过程相同(XOR的对称性)
return self.encrypt(ciphertext, key)

def verify_self_reference_property(processor: PhiInformationProcessor) -> bool:
"""验证信息处理系统的自指性质:I = I[I]"""

# 测试数据
test_input = [1, 0, 1, 1, 0]

# 第一次处理:I
result1, entropy1 = processor.process_information(test_input)

# 第二次处理:I[I] - 将结果再次输入系统
result2, entropy2 = processor.process_information(result1)

# 验证自指性质
# 1. 熵必须增加(根据唯一公理)
entropy_increased = entropy2.decimal_value > entropy1.decimal_value

# 2. 系统必须能够处理自己的输出
processing_successful = len(result2) > 0

# 3. 输出的结构特征应该保持某种相似性
structural_similarity = abs(len(result2) - len(result1)) <= max(len(result1), 1)

return entropy_increased and processing_successful and structural_similarity

# 完整的φ-量子信息处理验证函数
def complete_phi_information_processing_verification() -> Dict[str, bool]:
"""完整验证φ-量子信息处理系统的所有核心性质"""

results = {}

try:
# 1. 验证Zeckendorf编码的no-11约束
try:
valid_code = ZeckendorfCode([1, 0, 1, 0, 1]) # 有效
results["zeckendorf_no11_valid"] = True
except ValueError:
results["zeckendorf_no11_valid"] = False

try:
invalid_code = ZeckendorfCode([1, 1, 0, 1]) # 无效,违反no-11
results["zeckendorf_no11_invalid"] = False # 应该抛出异常
except ValueError:
results["zeckendorf_no11_invalid"] = True # 正确检测到违规

# 2. 验证φ-信息处理器的自指性
processor = PhiInformationProcessor()
results["self_reference_property"] = verify_self_reference_property(processor)

# 3. 验证φ-纠错码
error_corrector = PhiErrorCorrectionCode(3, 5) # F_4=3, F_5=5
test_info = [1, 0, 1]
encoded = error_corrector.encode(test_info)
decoded, success = error_corrector.decode(encoded)
results["error_correction"] = success and len(decoded) == len(test_info)

# 4. 验证φ-信道容量
channel = PhiChannelCapacity()
bandwidth = PhiReal.from_decimal(10.0)
snr = PhiReal.from_decimal(100.0)
capacity = channel.calculate_phi_shannon_capacity(bandwidth, snr)
results["channel_capacity"] = capacity.decimal_value > 0

# 5. 验证φ-压缩算法
compressor = PhiCompressionAlgorithm()
test_data = [1, 1, 0, 0, 1, 0, 1, 1]
compressed, ratio = compressor.compress(test_data)
results["compression"] = len(compressed) > 0 and ratio.decimal_value > 0

# 6. 验证φ-密码系统
crypto = PhiCryptographicSystem(8)
key = crypto.generate_phi_key()
plaintext = [1, 0, 1, 1, 0, 1, 0, 1]
ciphertext = crypto.encrypt(plaintext, key)
decrypted = crypto.decrypt(ciphertext, key)
results["cryptography"] = decrypted == plaintext

# 7. 验证熵增性质
test_input = [1, 0, 1]
_, final_entropy = processor.process_information(test_input)
results["entropy_increase"] = final_entropy.decimal_value > 0

except Exception as e:
results["exception"] = f"验证过程中发生异常: {str(e)}"

return results