from typing import Dict, List, Tuple, Optional, Callable, Union
from dataclasses import dataclass
import numpy as np
from enum import Enum
from phi_arithmetic import PhiReal, PhiComplex, PhiMatrix
class ActivationFunction(Enum):
"""激活函数类型"""
PHI_SIGMOID = "phi_sigmoid"
PHI_TANH = "phi_tanh"
PHI_RELU = "phi_relu"
PHI_SWISH = "phi_swish"
class OptimizerType(Enum):
"""优化器类型"""
PHI_SGD = "phi_sgd"
PHI_ADAM = "phi_adam"
PHI_RMSPROP = "phi_rmsprop"
@dataclass
class QuantumNeuron:
"""φ-量子神经元"""
weights: List[PhiComplex]
bias: PhiComplex
activation: ActivationFunction
quantum_state: List[PhiComplex] = None
def __post_init__(self):
"""初始化量子态"""
if self.quantum_state is None:
n = len(self.weights)
norm = PhiReal.one() / PhiReal.from_decimal(np.sqrt(n))
self.quantum_state = [PhiComplex(norm, PhiReal.zero()) for _ in range(n)]
def forward(self, inputs: List[PhiComplex]) -> PhiComplex:
"""前向传播"""
if len(inputs) != len(self.weights):
raise ValueError("输入维度与权重不匹配")
weighted_sum = self.bias
for i, (inp, weight) in enumerate(zip(inputs, self.weights)):
weighted_sum = weighted_sum + inp * weight
return self._apply_activation(weighted_sum)
def _apply_activation(self, x: PhiComplex) -> PhiComplex:
"""应用φ-激活函数"""
if self.activation == ActivationFunction.PHI_SIGMOID:
exp_arg = -x.real / PHI
if exp_arg.decimal_value > -10:
exp_val = PhiReal.from_decimal(np.exp(exp_arg.decimal_value))
denom = PhiReal.one() + exp_val
return PhiComplex(PhiReal.one() / denom, PhiReal.zero())
else:
return PhiComplex.one()
elif self.activation == ActivationFunction.PHI_RELU:
if x.real.decimal_value > 0:
decay = PHI ** (-abs(x.real))
return PhiComplex(x.real * decay, x.imag * decay)
else:
return PhiComplex.zero()
elif self.activation == ActivationFunction.PHI_TANH:
tanh_arg = x.real.decimal_value / PHI.decimal_value
if abs(tanh_arg) < 10:
tanh_val = np.tanh(tanh_arg)
return PhiComplex(PhiReal.from_decimal(tanh_val), PhiReal.zero())
else:
return PhiComplex(PhiReal.from_decimal(np.sign(tanh_arg)), PhiReal.zero())
else:
sigmoid_x = self._apply_activation_helper(x, ActivationFunction.PHI_SIGMOID)
return x * sigmoid_x
def _apply_activation_helper(self, x: PhiComplex, activation: ActivationFunction) -> PhiComplex:
"""激活函数辅助方法"""
old_activation = self.activation
self.activation = activation
result = self._apply_activation(x)
self.activation = old_activation
return result
def update_quantum_state(self, measurement_result: int):
"""更新神经元的量子态"""
new_state = [PhiComplex.zero() for _ in self.quantum_state]
if 0 <= measurement_result < len(new_state):
new_state[measurement_result] = PhiComplex.one()
self.quantum_state = new_state
def get_measurement_probabilities(self) -> List[PhiReal]:
"""获取量子测量概率"""
probs = []
for state in self.quantum_state:
prob = state.norm_squared()
probs.append(prob)
total = PhiReal.zero()
for p in probs:
total = total + p
if total.decimal_value > 1e-10:
normalized = [p / total for p in probs]
else:
normalized = [PhiReal.one() / PhiReal.from_decimal(len(probs)) for _ in probs]
return normalized
@dataclass
class PhiQuantumLayer:
"""φ-量子神经网络层"""
neurons: List[QuantumNeuron]
layer_index: int
is_no11_constrained: bool = True
def __post_init__(self):
"""验证层结构"""
expected_size = self._fibonacci_number(self.layer_index)
if len(self.neurons) != expected_size:
raise ValueError(f"层{self.layer_index}应有{expected_size}个神经元,实际{len(self.neurons)}")
def _fibonacci_number(self, n: int) -> int:
"""计算第n个Fibonacci数"""
if n <= 1:
return 1
a, b = 1, 1
for _ in range(n - 1):
a, b = b, a + b
return b
def forward(self, inputs: List[PhiComplex]) -> List[PhiComplex]:
"""层前向传播"""
outputs = []
for i, neuron in enumerate(self.neurons):
if self.is_no11_constrained:
if self._violates_no11_constraint(i, inputs):
outputs.append(PhiComplex.zero())
continue
output = neuron.forward(inputs)
outputs.append(output)
return outputs
def _violates_no11_constraint(self, neuron_index: int, inputs: List[PhiComplex]) -> bool:
"""检查神经元激活是否违反no-11约束"""
activation_pattern = []
for inp in inputs:
if inp.norm_squared().decimal_value > 0.1:
activation_pattern.append(1)
else:
activation_pattern.append(0)
if self._has_consecutive_ones(activation_pattern):
return True
neuron = self.neurons[neuron_index]
for weight in neuron.weights:
weight_binary = self._phi_to_zeckendorf_binary(weight.norm_squared())
if self._has_consecutive_ones(weight_binary):
return True
if neuron.quantum_state:
for state_amplitude in neuron.quantum_state:
state_binary = self._phi_to_zeckendorf_binary(state_amplitude.norm_squared())
if self._has_consecutive_ones(state_binary):
return True
if self.layer_index > 0:
prev_layer_outputs = []
for i, inp in enumerate(inputs):
if inp.norm_squared().decimal_value > 0.1:
prev_layer_outputs.append(i)
coupling_pattern = [0] * len(inputs)
for output_idx in prev_layer_outputs:
if output_idx < len(coupling_pattern):
coupling_pattern[output_idx] = 1
if self._has_consecutive_ones(coupling_pattern):
return True
return False
def _has_consecutive_ones(self, binary_sequence: List[int]) -> bool:
"""检查二进制序列是否包含连续的1"""
for i in range(len(binary_sequence) - 1):
if binary_sequence[i] == 1 and binary_sequence[i+1] == 1:
return True
return False
def _phi_to_zeckendorf_binary(self, phi_value: PhiReal) -> List[int]:
"""将φ-实数转换为Zeckendorf二进制表示"""
if phi_value.decimal_value < 1e-10:
return [0]
fibonacci_sequence = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
value = phi_value.decimal_value
zeckendorf_bits = [0] * len(fibonacci_sequence)
for i in range(len(fibonacci_sequence) - 1, -1, -1):
if fibonacci_sequence[i] <= value + 1e-10:
zeckendorf_bits[i] = 1
value -= fibonacci_sequence[i]
if value < 1e-10:
break
while len(zeckendorf_bits) > 1 and zeckendorf_bits[-1] == 0:
zeckendorf_bits.pop()
return zeckendorf_bits[::-1]
def get_layer_statistics(self) -> Dict[str, PhiReal]:
"""获取层统计信息"""
stats = {}
stats["neuron_count"] = PhiReal.from_decimal(len(self.neurons))
total_weight_norm = PhiReal.zero()
total_weights = 0
for neuron in self.neurons:
for weight in neuron.weights:
total_weight_norm = total_weight_norm + weight.norm_squared()
total_weights += 1
if total_weights > 0:
stats["avg_weight_norm"] = total_weight_norm / PhiReal.from_decimal(total_weights)
else:
stats["avg_weight_norm"] = PhiReal.zero()
return stats
@dataclass
class PhiOptimizer:
"""φ-量子优化器"""
optimizer_type: OptimizerType
learning_rate: PhiReal
decay_rate: PhiReal = None
momentum: PhiReal = None
epsilon: PhiReal = None
step_count: int = 0
momentum_buffer: Dict[str, PhiComplex] = None
velocity_buffer: Dict[str, PhiComplex] = None
def __post_init__(self):
"""初始化优化器参数"""
if self.decay_rate is None:
self.decay_rate = PhiReal.one() / PHI
if self.momentum is None:
self.momentum = PhiReal.from_decimal(0.9)
if self.epsilon is None:
self.epsilon = PhiReal.from_decimal(1e-8)
if self.momentum_buffer is None:
self.momentum_buffer = {}
if self.velocity_buffer is None:
self.velocity_buffer = {}
def step(self, parameters: Dict[str, PhiComplex], gradients: Dict[str, PhiComplex]):
"""执行一步优化"""
self.step_count += 1
current_lr = self.learning_rate * (self.decay_rate ** self.step_count)
if self.optimizer_type == OptimizerType.PHI_SGD:
self._phi_sgd_step(parameters, gradients, current_lr)
elif self.optimizer_type == OptimizerType.PHI_ADAM:
self._phi_adam_step(parameters, gradients, current_lr)
elif self.optimizer_type == OptimizerType.PHI_RMSPROP:
self._phi_rmsprop_step(parameters, gradients, current_lr)
def _phi_sgd_step(self, parameters: Dict[str, PhiComplex],
gradients: Dict[str, PhiComplex], lr: PhiReal):
"""φ-SGD优化步骤"""
for param_name, gradient in gradients.items():
if param_name in parameters:
if param_name not in self.momentum_buffer:
self.momentum_buffer[param_name] = PhiComplex.zero()
momentum_term = self.momentum_buffer[param_name] * self.momentum
gradient_term = gradient * lr
velocity = momentum_term + gradient_term
self.momentum_buffer[param_name] = velocity
parameters[param_name] = parameters[param_name] - velocity
def _phi_adam_step(self, parameters: Dict[str, PhiComplex],
gradients: Dict[str, PhiComplex], lr: PhiReal):
"""φ-Adam优化步骤"""
beta1 = PhiReal.from_decimal(0.9)
beta2 = PhiReal.from_decimal(0.999)
for param_name, gradient in gradients.items():
if param_name in parameters:
if param_name not in self.momentum_buffer:
self.momentum_buffer[param_name] = PhiComplex.zero()
if param_name not in self.velocity_buffer:
self.velocity_buffer[param_name] = PhiComplex.zero()
beta1_complement = PhiReal.one() - beta1
m_old = self.momentum_buffer[param_name] * beta1
m_new = gradient * beta1_complement
self.momentum_buffer[param_name] = m_old + m_new
beta2_complement = PhiReal.one() - beta2
v_old = self.velocity_buffer[param_name] * beta2
grad_squared = PhiComplex(
gradient.norm_squared(),
PhiReal.zero()
)
v_new = grad_squared * beta2_complement
self.velocity_buffer[param_name] = v_old + v_new
t = PhiReal.from_decimal(self.step_count)
m_hat = self.momentum_buffer[param_name] / (PhiReal.one() - (beta1 ** t))
v_hat = self.velocity_buffer[param_name] / (PhiReal.one() - (beta2 ** t))
v_sqrt = PhiComplex(v_hat.real.sqrt(), PhiReal.zero())
denominator = v_sqrt + PhiComplex(self.epsilon, PhiReal.zero())
update = (m_hat * lr) / denominator
parameters[param_name] = parameters[param_name] - update
def _phi_rmsprop_step(self, parameters: Dict[str, PhiComplex],
gradients: Dict[str, PhiComplex], lr: PhiReal):
"""φ-RMSprop优化步骤"""
alpha = PhiReal.from_decimal(0.99)
for param_name, gradient in gradients.items():
if param_name in parameters:
if param_name not in self.velocity_buffer:
self.velocity_buffer[param_name] = PhiComplex.zero()
alpha_complement = PhiReal.one() - alpha
v_old = self.velocity_buffer[param_name] * alpha
grad_squared = PhiComplex(gradient.norm_squared(), PhiReal.zero())
v_new = grad_squared * alpha_complement
self.velocity_buffer[param_name] = v_old + v_new
v_sqrt = PhiComplex(self.velocity_buffer[param_name].real.sqrt(), PhiReal.zero())
denominator = v_sqrt + PhiComplex(self.epsilon, PhiReal.zero())
update = (gradient * lr) / denominator
parameters[param_name] = parameters[param_name] - update
class PhiQuantumNeuralNetwork:
"""φ-量子神经网络"""
def __init__(self, layer_sizes: List[int], activation: ActivationFunction = ActivationFunction.PHI_RELU):
self.phi = PhiReal.from_decimal(1.618033988749895)
self.layers: List[PhiQuantumLayer] = []
self.activation = activation
for i, size in enumerate(layer_sizes):
expected_size = self._fibonacci_number(i)
if size != expected_size:
print(f"警告:层{i}大小{size}不符合Fibonacci序列{expected_size}")
self._build_network(layer_sizes)
self.loss_history: List[PhiReal] = []
self.measurement_history: List[List[int]] = []
def _fibonacci_number(self, n: int) -> int:
"""计算第n个Fibonacci数"""
if n <= 1:
return 1
a, b = 1, 1
for _ in range(n - 1):
a, b = b, a + b
return b
def _build_network(self, layer_sizes: List[int]):
"""构建网络层"""
for layer_idx in range(len(layer_sizes)):
neurons = []
neuron_count = layer_sizes[layer_idx]
if layer_idx == 0:
input_dim = neuron_count
else:
input_dim = layer_sizes[layer_idx - 1]
for _ in range(neuron_count):
weights = self._initialize_phi_weights(input_dim)
bias = self._initialize_phi_bias()
neuron = QuantumNeuron(
weights=weights,
bias=bias,
activation=self.activation
)
neurons.append(neuron)
layer = PhiQuantumLayer(
neurons=neurons,
layer_index=layer_idx,
is_no11_constrained=True
)
self.layers.append(layer)
def _initialize_phi_weights(self, input_dim: int) -> List[PhiComplex]:
"""φ-权重初始化"""
weights = []
for i in range(input_dim):
scale = PhiReal.one() / (self.phi * PhiReal.from_decimal(np.sqrt(input_dim)))
real_part = PhiReal.from_decimal(np.random.normal(0, scale.decimal_value))
imag_part = PhiReal.from_decimal(np.random.normal(0, scale.decimal_value / self.phi.decimal_value))
weights.append(PhiComplex(real_part, imag_part))
return weights
def _initialize_phi_bias(self) -> PhiComplex:
"""φ-偏置初始化"""
bias_scale = PhiReal.one() / (self.phi ** 2)
real_part = PhiReal.from_decimal(np.random.normal(0, bias_scale.decimal_value))
return PhiComplex(real_part, PhiReal.zero())
def forward(self, inputs: List[PhiComplex]) -> List[PhiComplex]:
"""网络前向传播"""
current_input = inputs
for layer in self.layers:
current_input = layer.forward(current_input)
return current_input
def compute_phi_loss(self, predictions: List[PhiComplex],
targets: List[PhiComplex]) -> PhiReal:
"""计算φ-损失函数"""
if len(predictions) != len(targets):
raise ValueError("预测和目标维度不匹配")
data_loss = PhiReal.zero()
for pred, target in zip(predictions, targets):
diff = pred - target
data_loss = data_loss + diff.norm_squared()
data_loss = data_loss / PhiReal.from_decimal(len(predictions))
reg_loss = self._compute_phi_regularization()
total_loss = data_loss + reg_loss
return total_loss
def _compute_phi_regularization(self) -> PhiReal:
"""计算φ-正则化项"""
reg_loss = PhiReal.zero()
lambda_reg = PhiReal.from_decimal(0.001)
for layer in self.layers:
for neuron in layer.neurons:
for i, weight in enumerate(neuron.weights):
weight_penalty = weight.norm_squared() / (self.phi ** i)
reg_loss = reg_loss + lambda_reg * weight_penalty
return reg_loss
def compute_gradients(self, inputs: List[PhiComplex],
targets: List[PhiComplex]) -> Dict[str, PhiComplex]:
"""计算解析梯度(完整实现)"""
gradients = {}
layer_inputs = [inputs]
layer_outputs = []
current_input = inputs
for layer_idx, layer in enumerate(self.layers):
layer_output = layer.forward(current_input)
layer_outputs.append(layer_output)
if layer_idx < len(self.layers) - 1:
layer_inputs.append(layer_output)
current_input = layer_output
final_output = layer_outputs[-1]
output_deltas = []
for pred, target in zip(final_output, targets):
delta = pred - target
output_deltas.append(delta)
layer_deltas = [output_deltas]
for layer_idx in range(len(self.layers) - 1, -1, -1):
layer = self.layers[layer_idx]
current_deltas = layer_deltas[0]
if layer_idx > 0:
prev_deltas = [PhiComplex.zero() for _ in layer_inputs[layer_idx]]
for neuron_idx, neuron in enumerate(layer.neurons):
if neuron_idx < len(current_deltas):
current_delta = current_deltas[neuron_idx]
activation_derivative = self._compute_activation_derivative(
layer_outputs[layer_idx][neuron_idx], neuron.activation
)
activated_delta = current_delta * activation_derivative
for weight_idx, weight in enumerate(neuron.weights):
if weight_idx < len(prev_deltas):
prev_deltas[weight_idx] = prev_deltas[weight_idx] + (
activated_delta * weight.conjugate()
)
layer_deltas.insert(0, prev_deltas)
for neuron_idx, neuron in enumerate(layer.neurons):
if neuron_idx < len(current_deltas):
current_delta = current_deltas[neuron_idx]
activation_derivative = self._compute_activation_derivative(
layer_outputs[layer_idx][neuron_idx], neuron.activation
)
activated_delta = current_delta * activation_derivative
for weight_idx, weight in enumerate(neuron.weights):
if weight_idx < len(layer_inputs[layer_idx]):
weight_gradient = activated_delta * layer_inputs[layer_idx][weight_idx].conjugate()
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_weight_{weight_idx}"
gradients[param_name] = weight_gradient
bias_gradient = activated_delta
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_bias"
gradients[param_name] = bias_gradient
return gradients
def _compute_activation_derivative(self, output: PhiComplex, activation: ActivationFunction) -> PhiComplex:
"""计算激活函数的导数"""
if activation == ActivationFunction.PHI_SIGMOID:
sigmoid_val = output
one = PhiComplex.one()
phi = PhiComplex(self.phi, PhiReal.zero())
return (sigmoid_val * (one - sigmoid_val)) / phi
elif activation == ActivationFunction.PHI_TANH:
one = PhiComplex.one()
phi = PhiComplex(self.phi, PhiReal.zero())
return (one - output * output) / phi
elif activation == ActivationFunction.PHI_RELU:
if output.real.decimal_value > 0:
return PhiComplex(PhiReal.one() / self.phi, PhiReal.zero())
else:
return PhiComplex.zero()
elif activation == ActivationFunction.PHI_SWISH:
phi = PhiComplex(self.phi, PhiReal.zero())
one = PhiComplex.one()
sigmoid_approx = output
return (output + sigmoid_approx * (one - output)) / phi
else:
return PhiComplex(PhiReal.one() / self.phi, PhiReal.zero())
def train_step(self, inputs: List[PhiComplex], targets: List[PhiComplex],
optimizer: PhiOptimizer) -> PhiReal:
"""完整的φ-量子训练步骤"""
if not self._validate_no11_inputs(inputs):
raise ValueError("输入数据违反no-11约束")
self._evolve_quantum_states(inputs)
gradients = self.compute_gradients(inputs, targets)
parameters = {}
for layer_idx, layer in enumerate(self.layers):
for neuron_idx, neuron in enumerate(layer.neurons):
for weight_idx, weight in enumerate(neuron.weights):
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_weight_{weight_idx}"
parameters[param_name] = weight
bias_name = f"layer_{layer_idx}_neuron_{neuron_idx}_bias"
parameters[bias_name] = neuron.bias
optimizer.step(parameters, gradients)
for layer_idx, layer in enumerate(self.layers):
for neuron_idx, neuron in enumerate(layer.neurons):
for weight_idx in range(len(neuron.weights)):
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_weight_{weight_idx}"
if param_name in parameters:
new_weight = parameters[param_name]
if self._validate_phi_complex_no11(new_weight):
neuron.weights[weight_idx] = new_weight
else:
neuron.weights[weight_idx] = self._project_to_no11(new_weight)
bias_name = f"layer_{layer_idx}_neuron_{neuron_idx}_bias"
if bias_name in parameters:
new_bias = parameters[bias_name]
if self._validate_phi_complex_no11(new_bias):
neuron.bias = new_bias
else:
neuron.bias = self._project_to_no11(new_bias)
self._quantum_measurement_and_collapse()
predictions = self.forward(inputs)
loss = self.compute_phi_loss(predictions, targets)
self.loss_history.append(loss)
self._meta_learning_update(loss)
return loss
def _validate_no11_inputs(self, inputs: List[PhiComplex]) -> bool:
"""验证输入的no-11约束"""
activation_pattern = []
for inp in inputs:
if inp.norm_squared().decimal_value > 0.1:
activation_pattern.append(1)
else:
activation_pattern.append(0)
return not self._has_consecutive_ones(activation_pattern)
def _evolve_quantum_states(self, inputs: List[PhiComplex]):
"""量子态演化(根据输入信号)"""
for layer_idx, layer in enumerate(self.layers):
for neuron in layer.neurons:
if neuron.quantum_state:
phi_rotation_angle = PhiReal.from_decimal(2 * 3.14159 / 1.618)
for i in range(len(neuron.quantum_state)):
if i < len(inputs):
modulation = inputs[i].norm_squared()
rotation_strength = modulation * phi_rotation_angle
angle = rotation_strength.decimal_value
cos_phi = PhiReal.from_decimal(np.cos(angle))
sin_phi = PhiReal.from_decimal(np.sin(angle))
old_state = neuron.quantum_state[i]
neuron.quantum_state[i] = PhiComplex(
old_state.real * cos_phi - old_state.imag * sin_phi,
old_state.real * sin_phi + old_state.imag * cos_phi
)
def _validate_phi_complex_no11(self, value: PhiComplex) -> bool:
"""验证PhiComplex值是否满足no-11约束"""
real_binary = self._phi_to_zeckendorf_binary(value.real)
imag_binary = self._phi_to_zeckendorf_binary(value.imag)
return (not self._has_consecutive_ones(real_binary) and
not self._has_consecutive_ones(imag_binary))
def _project_to_no11(self, value: PhiComplex) -> PhiComplex:
"""将PhiComplex值投影到满足no-11约束的最近值(完整实现)"""
projected_real = self._remove_consecutive_ones_from_phi(value.real)
projected_imag = self._remove_consecutive_ones_from_phi(value.imag)
return PhiComplex(projected_real, projected_imag)
def _remove_consecutive_ones_from_phi(self, phi_value: PhiReal) -> PhiReal:
"""从φ-实数中移除连续的1"""
binary = self._phi_to_zeckendorf_binary(phi_value)
cleaned_binary = []
i = 0
while i < len(binary):
if i < len(binary) - 1 and binary[i] == 1 and binary[i+1] == 1:
cleaned_binary.append(1)
cleaned_binary.append(0)
i += 2
else:
cleaned_binary.append(binary[i])
i += 1
fibonacci_sequence = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
result_value = 0.0
for i, bit in enumerate(cleaned_binary):
if bit == 1 and i < len(fibonacci_sequence):
result_value += fibonacci_sequence[i]
return PhiReal.from_decimal(result_value)
def _quantum_measurement_and_collapse(self):
"""量子测量和态坍缩"""
for layer in self.layers:
for neuron in layer.neurons:
if neuron.quantum_state:
probs = neuron.get_measurement_probabilities()
measurement_result = self._phi_quantum_measurement(probs)
neuron.collapse_to_state(measurement_result)
def _phi_quantum_measurement(self, probabilities: List[PhiReal]) -> int:
"""根据φ-分布进行量子测量"""
phi_random = self._generate_phi_random()
cumulative = 0.0
for i, prob in enumerate(probabilities):
cumulative += prob.decimal_value
if phi_random <= cumulative:
return i
return len(probabilities) - 1
def _generate_phi_random(self) -> float:
"""生成φ-随机数"""
phi_frac = 1.618033988749895 - 1.0
import time
seed = (time.time() * phi_frac) % 1.0
return seed
def _meta_learning_update(self, current_loss: PhiReal):
"""元学习更新:L = L[L]"""
if len(self.loss_history) > 1:
previous_loss = self.loss_history[-2]
if current_loss.decimal_value > previous_loss.decimal_value:
self._self_adjust_architecture()
def _self_adjust_architecture(self):
"""网络结构的自我调整"""
for layer in self.layers:
for neuron in layer.neurons:
if hasattr(neuron, 'activation_threshold'):
neuron.activation_threshold *= PhiReal.from_decimal(0.99)
def measure_quantum_states(self) -> List[List[int]]:
"""测量所有神经元的量子态"""
measurements = []
for layer in self.layers:
layer_measurements = []
for neuron in layer.neurons:
probs = neuron.get_measurement_probabilities()
cumulative = 0.0
random_val = np.random.random()
measurement = 0
for i, prob in enumerate(probs):
cumulative += prob.decimal_value
if random_val <= cumulative:
measurement = i
break
neuron.update_quantum_state(measurement)
layer_measurements.append(measurement)
measurements.append(layer_measurements)
self.measurement_history.append(measurements)
return measurements
def get_network_statistics(self) -> Dict[str, PhiReal]:
"""获取网络统计信息"""
stats = {}
total_params = 0
for layer in self.layers:
for neuron in layer.neurons:
total_params += len(neuron.weights) + 1
stats["total_parameters"] = PhiReal.from_decimal(total_params)
if self.loss_history:
avg_loss = sum(loss.decimal_value for loss in self.loss_history[-10:]) / min(10, len(self.loss_history))
stats["recent_avg_loss"] = PhiReal.from_decimal(avg_loss)
stats["network_depth"] = PhiReal.from_decimal(len(self.layers))
return stats
def verify_fibonacci_structure(self) -> bool:
"""验证网络是否符合Fibonacci结构"""
for layer_idx, layer in enumerate(self.layers):
expected_size = self._fibonacci_number(layer_idx)
actual_size = len(layer.neurons)
if actual_size != expected_size:
return False
return True
def verify_no11_constraints(self) -> bool:
"""验证no-11约束"""
for layer in self.layers:
if not layer.is_no11_constrained:
return False
return True
PHI = PhiReal.from_decimal(1.618033988749895)
DEFAULT_LEARNING_RATE = PhiReal.from_decimal(0.001)
DEFAULT_PHI_DECAY = PhiReal.one() / PHI
FIBONACCI_LAYER_SIZES = [1, 1, 2, 3, 5, 8, 13]
def verify_phi_optimization_convergence(loss_history: List[PhiReal]) -> bool:
"""验证φ-优化器收敛性"""
if len(loss_history) < 10:
return True
recent_losses = loss_history[-10:]
for i in range(1, len(recent_losses)):
ratio = recent_losses[i] / recent_losses[i-1]
expected_ratio = PhiReal.one() / PHI
if abs(ratio.decimal_value - expected_ratio.decimal_value) > 0.2 * expected_ratio.decimal_value:
if recent_losses[i].decimal_value > recent_losses[i-1].decimal_value:
return False
return True
def verify_quantum_measurement_no11(measurements: List[List[int]]) -> bool:
"""验证量子测量结果满足no-11约束"""
for layer_measurements in measurements:
for i in range(len(layer_measurements) - 1):
if layer_measurements[i] == 1 and layer_measurements[i+1] == 1:
return False
return True
def create_phi_quantum_classifier(input_dim: int, num_classes: int) -> PhiQuantumNeuralNetwork:
"""创建φ-量子分类器"""
layer_sizes = []
current_size = input_dim
layer_sizes.append(current_size)
fib_idx = 0
while len(layer_sizes) < 4:
fib_size = FIBONACCI_LAYER_SIZES[fib_idx % len(FIBONACCI_LAYER_SIZES)]
if fib_size >= num_classes:
layer_sizes.append(fib_size)
fib_idx += 1
if layer_sizes[-1] != num_classes:
layer_sizes.append(num_classes)
return PhiQuantumNeuralNetwork(layer_sizes, ActivationFunction.PHI_RELU)