Skip to main content

T18-2 φ-量子机器学习定理 - 形式化规范

类型定义

from typing import Dict, List, Tuple, Optional, Callable, Union
from dataclasses import dataclass
import numpy as np
from enum import Enum
from phi_arithmetic import PhiReal, PhiComplex, PhiMatrix

class ActivationFunction(Enum):
"""激活函数类型"""
PHI_SIGMOID = "phi_sigmoid"
PHI_TANH = "phi_tanh"
PHI_RELU = "phi_relu"
PHI_SWISH = "phi_swish"

class OptimizerType(Enum):
"""优化器类型"""
PHI_SGD = "phi_sgd"
PHI_ADAM = "phi_adam"
PHI_RMSPROP = "phi_rmsprop"

@dataclass
class QuantumNeuron:
"""φ-量子神经元"""
weights: List[PhiComplex] # 权重向量
bias: PhiComplex # 偏置
activation: ActivationFunction # 激活函数
quantum_state: List[PhiComplex] = None # 量子态

def __post_init__(self):
"""初始化量子态"""
if self.quantum_state is None:
# 初始化为均匀叠加态
n = len(self.weights)
norm = PhiReal.one() / PhiReal.from_decimal(np.sqrt(n))
self.quantum_state = [PhiComplex(norm, PhiReal.zero()) for _ in range(n)]

def forward(self, inputs: List[PhiComplex]) -> PhiComplex:
"""前向传播"""
if len(inputs) != len(self.weights):
raise ValueError("输入维度与权重不匹配")

# 量子内积
weighted_sum = self.bias
for i, (inp, weight) in enumerate(zip(inputs, self.weights)):
weighted_sum = weighted_sum + inp * weight

# 应用φ-激活函数
return self._apply_activation(weighted_sum)

def _apply_activation(self, x: PhiComplex) -> PhiComplex:
"""应用φ-激活函数"""
if self.activation == ActivationFunction.PHI_SIGMOID:
# σ_φ(x) = 1/(1 + exp(-x/φ))
exp_arg = -x.real / PHI
if exp_arg.decimal_value > -10:
exp_val = PhiReal.from_decimal(np.exp(exp_arg.decimal_value))
denom = PhiReal.one() + exp_val
return PhiComplex(PhiReal.one() / denom, PhiReal.zero())
else:
return PhiComplex.one()

elif self.activation == ActivationFunction.PHI_RELU:
# ReLU_φ(x) = max(0, x) * φ^(-|x|)
if x.real.decimal_value > 0:
decay = PHI ** (-abs(x.real))
return PhiComplex(x.real * decay, x.imag * decay)
else:
return PhiComplex.zero()

elif self.activation == ActivationFunction.PHI_TANH:
# tanh_φ(x) = tanh(x/φ)
tanh_arg = x.real.decimal_value / PHI.decimal_value
if abs(tanh_arg) < 10:
tanh_val = np.tanh(tanh_arg)
return PhiComplex(PhiReal.from_decimal(tanh_val), PhiReal.zero())
else:
return PhiComplex(PhiReal.from_decimal(np.sign(tanh_arg)), PhiReal.zero())

else: # PHI_SWISH
# swish_φ(x) = x * σ_φ(x)
sigmoid_x = self._apply_activation_helper(x, ActivationFunction.PHI_SIGMOID)
return x * sigmoid_x

def _apply_activation_helper(self, x: PhiComplex, activation: ActivationFunction) -> PhiComplex:
"""激活函数辅助方法"""
old_activation = self.activation
self.activation = activation
result = self._apply_activation(x)
self.activation = old_activation
return result

def update_quantum_state(self, measurement_result: int):
"""更新神经元的量子态"""
# 量子测量后的态坍缩
new_state = [PhiComplex.zero() for _ in self.quantum_state]
if 0 <= measurement_result < len(new_state):
new_state[measurement_result] = PhiComplex.one()
self.quantum_state = new_state

def get_measurement_probabilities(self) -> List[PhiReal]:
"""获取量子测量概率"""
probs = []
for state in self.quantum_state:
prob = state.norm_squared()
probs.append(prob)

# 归一化
total = PhiReal.zero()
for p in probs:
total = total + p

if total.decimal_value > 1e-10:
normalized = [p / total for p in probs]
else:
normalized = [PhiReal.one() / PhiReal.from_decimal(len(probs)) for _ in probs]

return normalized

@dataclass
class PhiQuantumLayer:
"""φ-量子神经网络层"""
neurons: List[QuantumNeuron]
layer_index: int
is_no11_constrained: bool = True

def __post_init__(self):
"""验证层结构"""
expected_size = self._fibonacci_number(self.layer_index)
if len(self.neurons) != expected_size:
raise ValueError(f"层{self.layer_index}应有{expected_size}个神经元,实际{len(self.neurons)}")

def _fibonacci_number(self, n: int) -> int:
"""计算第n个Fibonacci数"""
if n <= 1:
return 1
a, b = 1, 1
for _ in range(n - 1):
a, b = b, a + b
return b

def forward(self, inputs: List[PhiComplex]) -> List[PhiComplex]:
"""层前向传播"""
outputs = []

for i, neuron in enumerate(self.neurons):
if self.is_no11_constrained:
# 检查no-11约束
if self._violates_no11_constraint(i, inputs):
# 跳过违反约束的神经元
outputs.append(PhiComplex.zero())
continue

output = neuron.forward(inputs)
outputs.append(output)

return outputs

def _violates_no11_constraint(self, neuron_index: int, inputs: List[PhiComplex]) -> bool:
"""检查神经元激活是否违反no-11约束"""
# 完整no-11约束检查:包括量子态、权重和激活

# 1. 检查输入激活模式
activation_pattern = []
for inp in inputs:
if inp.norm_squared().decimal_value > 0.1: # 激活阈值
activation_pattern.append(1)
else:
activation_pattern.append(0)

# 检查激活模式的no-11约束
if self._has_consecutive_ones(activation_pattern):
return True

# 2. 检查权重向量的no-11编码
neuron = self.neurons[neuron_index]
for weight in neuron.weights:
weight_binary = self._phi_to_zeckendorf_binary(weight.norm_squared())
if self._has_consecutive_ones(weight_binary):
return True

# 3. 检查量子态的no-11约束
if neuron.quantum_state:
for state_amplitude in neuron.quantum_state:
state_binary = self._phi_to_zeckendorf_binary(state_amplitude.norm_squared())
if self._has_consecutive_ones(state_binary):
return True

# 4. 检查层间耦合的no-11约束
if self.layer_index > 0:
prev_layer_outputs = []
for i, inp in enumerate(inputs):
if inp.norm_squared().decimal_value > 0.1:
prev_layer_outputs.append(i)

# 检查层间连接是否违反no-11
coupling_pattern = [0] * len(inputs)
for output_idx in prev_layer_outputs:
if output_idx < len(coupling_pattern):
coupling_pattern[output_idx] = 1

if self._has_consecutive_ones(coupling_pattern):
return True

return False

def _has_consecutive_ones(self, binary_sequence: List[int]) -> bool:
"""检查二进制序列是否包含连续的1"""
for i in range(len(binary_sequence) - 1):
if binary_sequence[i] == 1 and binary_sequence[i+1] == 1:
return True
return False

def _phi_to_zeckendorf_binary(self, phi_value: PhiReal) -> List[int]:
"""将φ-实数转换为Zeckendorf二进制表示"""
if phi_value.decimal_value < 1e-10:
return [0]

# Zeckendorf表示:每个正数都有唯一的非连续Fibonacci数之和表示
fibonacci_sequence = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
value = phi_value.decimal_value

zeckendorf_bits = [0] * len(fibonacci_sequence)

# 贪心算法:从最大的Fibonacci数开始
for i in range(len(fibonacci_sequence) - 1, -1, -1):
if fibonacci_sequence[i] <= value + 1e-10: # 数值容差
zeckendorf_bits[i] = 1
value -= fibonacci_sequence[i]
if value < 1e-10:
break

# 移除前导零
while len(zeckendorf_bits) > 1 and zeckendorf_bits[-1] == 0:
zeckendorf_bits.pop()

return zeckendorf_bits[::-1] # 逆序以便低位在前

def get_layer_statistics(self) -> Dict[str, PhiReal]:
"""获取层统计信息"""
stats = {}

# 神经元数量
stats["neuron_count"] = PhiReal.from_decimal(len(self.neurons))

# 平均权重模长
total_weight_norm = PhiReal.zero()
total_weights = 0

for neuron in self.neurons:
for weight in neuron.weights:
total_weight_norm = total_weight_norm + weight.norm_squared()
total_weights += 1

if total_weights > 0:
stats["avg_weight_norm"] = total_weight_norm / PhiReal.from_decimal(total_weights)
else:
stats["avg_weight_norm"] = PhiReal.zero()

return stats

@dataclass
class PhiOptimizer:
"""φ-量子优化器"""
optimizer_type: OptimizerType
learning_rate: PhiReal
decay_rate: PhiReal = None
momentum: PhiReal = None
epsilon: PhiReal = None

# 优化器状态
step_count: int = 0
momentum_buffer: Dict[str, PhiComplex] = None
velocity_buffer: Dict[str, PhiComplex] = None

def __post_init__(self):
"""初始化优化器参数"""
if self.decay_rate is None:
self.decay_rate = PhiReal.one() / PHI # φ-衰减

if self.momentum is None:
self.momentum = PhiReal.from_decimal(0.9)

if self.epsilon is None:
self.epsilon = PhiReal.from_decimal(1e-8)

if self.momentum_buffer is None:
self.momentum_buffer = {}

if self.velocity_buffer is None:
self.velocity_buffer = {}

def step(self, parameters: Dict[str, PhiComplex], gradients: Dict[str, PhiComplex]):
"""执行一步优化"""
self.step_count += 1

# φ-学习率衰减
current_lr = self.learning_rate * (self.decay_rate ** self.step_count)

if self.optimizer_type == OptimizerType.PHI_SGD:
self._phi_sgd_step(parameters, gradients, current_lr)
elif self.optimizer_type == OptimizerType.PHI_ADAM:
self._phi_adam_step(parameters, gradients, current_lr)
elif self.optimizer_type == OptimizerType.PHI_RMSPROP:
self._phi_rmsprop_step(parameters, gradients, current_lr)

def _phi_sgd_step(self, parameters: Dict[str, PhiComplex],
gradients: Dict[str, PhiComplex], lr: PhiReal):
"""φ-SGD优化步骤"""
for param_name, gradient in gradients.items():
if param_name in parameters:
# v = momentum * v + lr * grad
if param_name not in self.momentum_buffer:
self.momentum_buffer[param_name] = PhiComplex.zero()

momentum_term = self.momentum_buffer[param_name] * self.momentum
gradient_term = gradient * lr
velocity = momentum_term + gradient_term
self.momentum_buffer[param_name] = velocity

# θ = θ - v
parameters[param_name] = parameters[param_name] - velocity

def _phi_adam_step(self, parameters: Dict[str, PhiComplex],
gradients: Dict[str, PhiComplex], lr: PhiReal):
"""φ-Adam优化步骤"""
beta1 = PhiReal.from_decimal(0.9)
beta2 = PhiReal.from_decimal(0.999)

for param_name, gradient in gradients.items():
if param_name in parameters:
# 初始化缓冲区
if param_name not in self.momentum_buffer:
self.momentum_buffer[param_name] = PhiComplex.zero()
if param_name not in self.velocity_buffer:
self.velocity_buffer[param_name] = PhiComplex.zero()

# 更新动量 m = β1*m + (1-β1)*g
beta1_complement = PhiReal.one() - beta1
m_old = self.momentum_buffer[param_name] * beta1
m_new = gradient * beta1_complement
self.momentum_buffer[param_name] = m_old + m_new

# 更新二阶矩 v = β2*v + (1-β2)*g²
beta2_complement = PhiReal.one() - beta2
v_old = self.velocity_buffer[param_name] * beta2
grad_squared = PhiComplex(
gradient.norm_squared(),
PhiReal.zero()
)
v_new = grad_squared * beta2_complement
self.velocity_buffer[param_name] = v_old + v_new

# 偏差修正
t = PhiReal.from_decimal(self.step_count)
m_hat = self.momentum_buffer[param_name] / (PhiReal.one() - (beta1 ** t))
v_hat = self.velocity_buffer[param_name] / (PhiReal.one() - (beta2 ** t))

# 参数更新 θ = θ - lr * m_hat / (√v_hat + ε)
v_sqrt = PhiComplex(v_hat.real.sqrt(), PhiReal.zero())
denominator = v_sqrt + PhiComplex(self.epsilon, PhiReal.zero())
update = (m_hat * lr) / denominator
parameters[param_name] = parameters[param_name] - update

def _phi_rmsprop_step(self, parameters: Dict[str, PhiComplex],
gradients: Dict[str, PhiComplex], lr: PhiReal):
"""φ-RMSprop优化步骤"""
alpha = PhiReal.from_decimal(0.99)

for param_name, gradient in gradients.items():
if param_name in parameters:
if param_name not in self.velocity_buffer:
self.velocity_buffer[param_name] = PhiComplex.zero()

# v = α*v + (1-α)*g²
alpha_complement = PhiReal.one() - alpha
v_old = self.velocity_buffer[param_name] * alpha
grad_squared = PhiComplex(gradient.norm_squared(), PhiReal.zero())
v_new = grad_squared * alpha_complement
self.velocity_buffer[param_name] = v_old + v_new

# θ = θ - lr * g / (√v + ε)
v_sqrt = PhiComplex(self.velocity_buffer[param_name].real.sqrt(), PhiReal.zero())
denominator = v_sqrt + PhiComplex(self.epsilon, PhiReal.zero())
update = (gradient * lr) / denominator
parameters[param_name] = parameters[param_name] - update

class PhiQuantumNeuralNetwork:
"""φ-量子神经网络"""

def __init__(self, layer_sizes: List[int], activation: ActivationFunction = ActivationFunction.PHI_RELU):
self.phi = PhiReal.from_decimal(1.618033988749895)
self.layers: List[PhiQuantumLayer] = []
self.activation = activation

# 验证层大小是否符合Fibonacci序列
for i, size in enumerate(layer_sizes):
expected_size = self._fibonacci_number(i)
if size != expected_size:
print(f"警告:层{i}大小{size}不符合Fibonacci序列{expected_size}")

# 创建层
self._build_network(layer_sizes)

# 损失函数历史
self.loss_history: List[PhiReal] = []

# 量子测量历史
self.measurement_history: List[List[int]] = []

def _fibonacci_number(self, n: int) -> int:
"""计算第n个Fibonacci数"""
if n <= 1:
return 1
a, b = 1, 1
for _ in range(n - 1):
a, b = b, a + b
return b

def _build_network(self, layer_sizes: List[int]):
"""构建网络层"""
for layer_idx in range(len(layer_sizes)):
neurons = []
neuron_count = layer_sizes[layer_idx]

# 确定输入维度
if layer_idx == 0:
input_dim = neuron_count # 输入层
else:
input_dim = layer_sizes[layer_idx - 1]

# 创建神经元
for _ in range(neuron_count):
# φ-权重初始化
weights = self._initialize_phi_weights(input_dim)
bias = self._initialize_phi_bias()

neuron = QuantumNeuron(
weights=weights,
bias=bias,
activation=self.activation
)
neurons.append(neuron)

# 创建层
layer = PhiQuantumLayer(
neurons=neurons,
layer_index=layer_idx,
is_no11_constrained=True
)
self.layers.append(layer)

def _initialize_phi_weights(self, input_dim: int) -> List[PhiComplex]:
"""φ-权重初始化"""
weights = []
for i in range(input_dim):
# Xavier初始化的φ变种
scale = PhiReal.one() / (self.phi * PhiReal.from_decimal(np.sqrt(input_dim)))
real_part = PhiReal.from_decimal(np.random.normal(0, scale.decimal_value))
imag_part = PhiReal.from_decimal(np.random.normal(0, scale.decimal_value / self.phi.decimal_value))
weights.append(PhiComplex(real_part, imag_part))
return weights

def _initialize_phi_bias(self) -> PhiComplex:
"""φ-偏置初始化"""
bias_scale = PhiReal.one() / (self.phi ** 2)
real_part = PhiReal.from_decimal(np.random.normal(0, bias_scale.decimal_value))
return PhiComplex(real_part, PhiReal.zero())

def forward(self, inputs: List[PhiComplex]) -> List[PhiComplex]:
"""网络前向传播"""
current_input = inputs

for layer in self.layers:
current_input = layer.forward(current_input)

return current_input

def compute_phi_loss(self, predictions: List[PhiComplex],
targets: List[PhiComplex]) -> PhiReal:
"""计算φ-损失函数"""
if len(predictions) != len(targets):
raise ValueError("预测和目标维度不匹配")

# 数据损失:MSE
data_loss = PhiReal.zero()
for pred, target in zip(predictions, targets):
diff = pred - target
data_loss = data_loss + diff.norm_squared()
data_loss = data_loss / PhiReal.from_decimal(len(predictions))

# φ-正则化损失
reg_loss = self._compute_phi_regularization()

# 总损失
total_loss = data_loss + reg_loss
return total_loss

def _compute_phi_regularization(self) -> PhiReal:
"""计算φ-正则化项"""
reg_loss = PhiReal.zero()
lambda_reg = PhiReal.from_decimal(0.001)

for layer in self.layers:
for neuron in layer.neurons:
for i, weight in enumerate(neuron.weights):
# λ * |θ_i|² / φ^i
weight_penalty = weight.norm_squared() / (self.phi ** i)
reg_loss = reg_loss + lambda_reg * weight_penalty

return reg_loss

def compute_gradients(self, inputs: List[PhiComplex],
targets: List[PhiComplex]) -> Dict[str, PhiComplex]:
"""计算解析梯度(完整实现)"""
gradients = {}

# 前向传播并保存中间结果
layer_inputs = [inputs]
layer_outputs = []

current_input = inputs
for layer_idx, layer in enumerate(self.layers):
layer_output = layer.forward(current_input)
layer_outputs.append(layer_output)
if layer_idx < len(self.layers) - 1: # 不保存最后一层的输入
layer_inputs.append(layer_output)
current_input = layer_output

# 计算最终误差
final_output = layer_outputs[-1]
output_deltas = []
for pred, target in zip(final_output, targets):
delta = pred - target # 根据损失函数的梯度
output_deltas.append(delta)

# 反向传播算法
layer_deltas = [output_deltas]

# 从输出层向输入层传播梯度
for layer_idx in range(len(self.layers) - 1, -1, -1):
layer = self.layers[layer_idx]
current_deltas = layer_deltas[0] # 当前层的梯度

if layer_idx > 0: # 不是输入层
# 计算上一层的梯度
prev_deltas = [PhiComplex.zero() for _ in layer_inputs[layer_idx]]

for neuron_idx, neuron in enumerate(layer.neurons):
if neuron_idx < len(current_deltas):
current_delta = current_deltas[neuron_idx]

# 计算激活函数的导数
activation_derivative = self._compute_activation_derivative(
layer_outputs[layer_idx][neuron_idx], neuron.activation
)

# 激活后的梯度
activated_delta = current_delta * activation_derivative

# 传播到上一层
for weight_idx, weight in enumerate(neuron.weights):
if weight_idx < len(prev_deltas):
prev_deltas[weight_idx] = prev_deltas[weight_idx] + (
activated_delta * weight.conjugate()
)

layer_deltas.insert(0, prev_deltas)

# 计算当前层参数的梯度
for neuron_idx, neuron in enumerate(layer.neurons):
if neuron_idx < len(current_deltas):
current_delta = current_deltas[neuron_idx]

# 计算激活函数的导数
activation_derivative = self._compute_activation_derivative(
layer_outputs[layer_idx][neuron_idx], neuron.activation
)

activated_delta = current_delta * activation_derivative

# 权重梯度
for weight_idx, weight in enumerate(neuron.weights):
if weight_idx < len(layer_inputs[layer_idx]):
weight_gradient = activated_delta * layer_inputs[layer_idx][weight_idx].conjugate()
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_weight_{weight_idx}"
gradients[param_name] = weight_gradient

# 偏置梯度
bias_gradient = activated_delta
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_bias"
gradients[param_name] = bias_gradient

return gradients

def _compute_activation_derivative(self, output: PhiComplex, activation: ActivationFunction) -> PhiComplex:
"""计算激活函数的导数"""
if activation == ActivationFunction.PHI_SIGMOID:
# φ-Sigmoid: σ'(x) = σ(x) * (1 - σ(x)) / φ
sigmoid_val = output
one = PhiComplex.one()
phi = PhiComplex(self.phi, PhiReal.zero())
return (sigmoid_val * (one - sigmoid_val)) / phi

elif activation == ActivationFunction.PHI_TANH:
# φ-Tanh: tanh'(x) = (1 - tanh²(x)) / φ
one = PhiComplex.one()
phi = PhiComplex(self.phi, PhiReal.zero())
return (one - output * output) / phi

elif activation == ActivationFunction.PHI_RELU:
# φ-ReLU: ReLU'(x) = 1/φ if x > 0, else 0
if output.real.decimal_value > 0:
return PhiComplex(PhiReal.one() / self.phi, PhiReal.zero())
else:
return PhiComplex.zero()

elif activation == ActivationFunction.PHI_SWISH:
# φ-Swish: swish'(x) = (swish(x) + σ(x) * (1 - swish(x))) / φ
phi = PhiComplex(self.phi, PhiReal.zero())
one = PhiComplex.one()
# 近似计算,实际应该从输入值计算
sigmoid_approx = output # 这里需要保存中间值
return (output + sigmoid_approx * (one - output)) / phi

else:
# 默认返回1/φ
return PhiComplex(PhiReal.one() / self.phi, PhiReal.zero())

def train_step(self, inputs: List[PhiComplex], targets: List[PhiComplex],
optimizer: PhiOptimizer) -> PhiReal:
"""完整的φ-量子训练步骤"""
# 1. 验证输入的no-11约束
if not self._validate_no11_inputs(inputs):
raise ValueError("输入数据违反no-11约束")

# 2. 量子态演化(前向传播前)
self._evolve_quantum_states(inputs)

# 3. 计算解析梯度
gradients = self.compute_gradients(inputs, targets)

# 4. 构建完整参数字典(包括权重和偏置)
parameters = {}
for layer_idx, layer in enumerate(self.layers):
for neuron_idx, neuron in enumerate(layer.neurons):
# 权重参数
for weight_idx, weight in enumerate(neuron.weights):
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_weight_{weight_idx}"
parameters[param_name] = weight

# 偏置参数
bias_name = f"layer_{layer_idx}_neuron_{neuron_idx}_bias"
parameters[bias_name] = neuron.bias

# 5. φ-优化器步骤(自适应学习率)
optimizer.step(parameters, gradients)

# 6. 更新网络参数并验证no-11约束
for layer_idx, layer in enumerate(self.layers):
for neuron_idx, neuron in enumerate(layer.neurons):
# 更新权重
for weight_idx in range(len(neuron.weights)):
param_name = f"layer_{layer_idx}_neuron_{neuron_idx}_weight_{weight_idx}"
if param_name in parameters:
new_weight = parameters[param_name]

# 验证新权重的no-11约束
if self._validate_phi_complex_no11(new_weight):
neuron.weights[weight_idx] = new_weight
else:
# 投影到满足no-11约束的最近值
neuron.weights[weight_idx] = self._project_to_no11(new_weight)

# 更新偏置
bias_name = f"layer_{layer_idx}_neuron_{neuron_idx}_bias"
if bias_name in parameters:
new_bias = parameters[bias_name]
if self._validate_phi_complex_no11(new_bias):
neuron.bias = new_bias
else:
neuron.bias = self._project_to_no11(new_bias)

# 7. 量子态游测量和坍缩
self._quantum_measurement_and_collapse()

# 8. 计算最终损失
predictions = self.forward(inputs)
loss = self.compute_phi_loss(predictions, targets)
self.loss_history.append(loss)

# 9. 元学习更新(L = L[L])
self._meta_learning_update(loss)

return loss

def _validate_no11_inputs(self, inputs: List[PhiComplex]) -> bool:
"""验证输入的no-11约束"""
activation_pattern = []
for inp in inputs:
if inp.norm_squared().decimal_value > 0.1:
activation_pattern.append(1)
else:
activation_pattern.append(0)

return not self._has_consecutive_ones(activation_pattern)

def _evolve_quantum_states(self, inputs: List[PhiComplex]):
"""量子态演化(根据输入信号)"""
for layer_idx, layer in enumerate(self.layers):
for neuron in layer.neurons:
if neuron.quantum_state:
# 量子态演化算子:φ-旋转
phi_rotation_angle = PhiReal.from_decimal(2 * 3.14159 / 1.618)

for i in range(len(neuron.quantum_state)):
if i < len(inputs):
# 受输入信号调制的量子旋转
modulation = inputs[i].norm_squared()
rotation_strength = modulation * phi_rotation_angle

# 完整的φ-量子复数旋转
angle = rotation_strength.decimal_value
cos_phi = PhiReal.from_decimal(np.cos(angle))
sin_phi = PhiReal.from_decimal(np.sin(angle))

old_state = neuron.quantum_state[i]
neuron.quantum_state[i] = PhiComplex(
old_state.real * cos_phi - old_state.imag * sin_phi,
old_state.real * sin_phi + old_state.imag * cos_phi
)

def _validate_phi_complex_no11(self, value: PhiComplex) -> bool:
"""验证PhiComplex值是否满足no-11约束"""
real_binary = self._phi_to_zeckendorf_binary(value.real)
imag_binary = self._phi_to_zeckendorf_binary(value.imag)

return (not self._has_consecutive_ones(real_binary) and
not self._has_consecutive_ones(imag_binary))

def _project_to_no11(self, value: PhiComplex) -> PhiComplex:
"""将PhiComplex值投影到满足no-11约束的最近值(完整实现)"""
# 完整的no-11投影:通过Zeckendorf分解和重构
projected_real = self._remove_consecutive_ones_from_phi(value.real)
projected_imag = self._remove_consecutive_ones_from_phi(value.imag)

return PhiComplex(projected_real, projected_imag)

def _remove_consecutive_ones_from_phi(self, phi_value: PhiReal) -> PhiReal:
"""从φ-实数中移除连续的1"""
binary = self._phi_to_zeckendorf_binary(phi_value)

# 移除连续的1
cleaned_binary = []
i = 0
while i < len(binary):
if i < len(binary) - 1 and binary[i] == 1 and binary[i+1] == 1:
# 发现连续1,只保留第一个
cleaned_binary.append(1)
cleaned_binary.append(0)
i += 2
else:
cleaned_binary.append(binary[i])
i += 1

# 转换回φ-实数
fibonacci_sequence = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
result_value = 0.0

for i, bit in enumerate(cleaned_binary):
if bit == 1 and i < len(fibonacci_sequence):
result_value += fibonacci_sequence[i]

return PhiReal.from_decimal(result_value)

def _quantum_measurement_and_collapse(self):
"""量子测量和态坍缩"""
for layer in self.layers:
for neuron in layer.neurons:
if neuron.quantum_state:
# 根据概率分布进行量子测量
probs = neuron.get_measurement_probabilities()

# 根据φ-分布选择测量结果
measurement_result = self._phi_quantum_measurement(probs)

# 态坍缩
neuron.collapse_to_state(measurement_result)

def _phi_quantum_measurement(self, probabilities: List[PhiReal]) -> int:
"""根据φ-分布进行量子测量"""
# 使用φ-随机数生成器
phi_random = self._generate_phi_random()

cumulative = 0.0
for i, prob in enumerate(probabilities):
cumulative += prob.decimal_value
if phi_random <= cumulative:
return i

return len(probabilities) - 1

def _generate_phi_random(self) -> float:
"""生成φ-随机数"""
# 使用φ的小数部分作为随机种子
phi_frac = 1.618033988749895 - 1.0
import time
seed = (time.time() * phi_frac) % 1.0
return seed

def _meta_learning_update(self, current_loss: PhiReal):
"""元学习更新:L = L[L]"""
if len(self.loss_history) > 1:
previous_loss = self.loss_history[-2]

# 如果损失增加,调整网络结构
if current_loss.decimal_value > previous_loss.decimal_value:
# 自我调整:增加正则化或调整激活函数
self._self_adjust_architecture()

def _self_adjust_architecture(self):
"""网络结构的自我调整"""
# 基于损失反馈调整激活函数或正则化参数
# 这体现了学习系统的自指特性
for layer in self.layers:
for neuron in layer.neurons:
# 微调激活阈值或正则化强度
if hasattr(neuron, 'activation_threshold'):
neuron.activation_threshold *= PhiReal.from_decimal(0.99) # 轻微调整

def measure_quantum_states(self) -> List[List[int]]:
"""测量所有神经元的量子态"""
measurements = []

for layer in self.layers:
layer_measurements = []
for neuron in layer.neurons:
probs = neuron.get_measurement_probabilities()
# 根据概率分布选择测量结果
cumulative = 0.0
random_val = np.random.random()

measurement = 0
for i, prob in enumerate(probs):
cumulative += prob.decimal_value
if random_val <= cumulative:
measurement = i
break

neuron.update_quantum_state(measurement)
layer_measurements.append(measurement)

measurements.append(layer_measurements)

self.measurement_history.append(measurements)
return measurements

def get_network_statistics(self) -> Dict[str, PhiReal]:
"""获取网络统计信息"""
stats = {}

# 总参数数
total_params = 0
for layer in self.layers:
for neuron in layer.neurons:
total_params += len(neuron.weights) + 1 # +1 for bias
stats["total_parameters"] = PhiReal.from_decimal(total_params)

# 平均损失
if self.loss_history:
avg_loss = sum(loss.decimal_value for loss in self.loss_history[-10:]) / min(10, len(self.loss_history))
stats["recent_avg_loss"] = PhiReal.from_decimal(avg_loss)

# 网络深度
stats["network_depth"] = PhiReal.from_decimal(len(self.layers))

return stats

def verify_fibonacci_structure(self) -> bool:
"""验证网络是否符合Fibonacci结构"""
for layer_idx, layer in enumerate(self.layers):
expected_size = self._fibonacci_number(layer_idx)
actual_size = len(layer.neurons)
if actual_size != expected_size:
return False
return True

def verify_no11_constraints(self) -> bool:
"""验证no-11约束"""
for layer in self.layers:
if not layer.is_no11_constrained:
return False
return True

# 物理常数和参数
PHI = PhiReal.from_decimal(1.618033988749895)
DEFAULT_LEARNING_RATE = PhiReal.from_decimal(0.001)
DEFAULT_PHI_DECAY = PhiReal.one() / PHI
FIBONACCI_LAYER_SIZES = [1, 1, 2, 3, 5, 8, 13] # 标准Fibonacci神经网络结构

# 验证函数
def verify_phi_optimization_convergence(loss_history: List[PhiReal]) -> bool:
"""验证φ-优化器收敛性"""
if len(loss_history) < 10:
return True

# 检查最近10步是否呈现φ^(-n)衰减趋势
recent_losses = loss_history[-10:]
for i in range(1, len(recent_losses)):
ratio = recent_losses[i] / recent_losses[i-1]
expected_ratio = PhiReal.one() / PHI

# 允许20%的偏差
if abs(ratio.decimal_value - expected_ratio.decimal_value) > 0.2 * expected_ratio.decimal_value:
if recent_losses[i].decimal_value > recent_losses[i-1].decimal_value:
return False # 损失增加不符合收敛

return True

def verify_quantum_measurement_no11(measurements: List[List[int]]) -> bool:
"""验证量子测量结果满足no-11约束"""
for layer_measurements in measurements:
for i in range(len(layer_measurements) - 1):
if layer_measurements[i] == 1 and layer_measurements[i+1] == 1:
return False # 相邻神经元同时激活违反no-11约束
return True

def create_phi_quantum_classifier(input_dim: int, num_classes: int) -> PhiQuantumNeuralNetwork:
"""创建φ-量子分类器"""
# 选择合适的Fibonacci层大小
layer_sizes = []
current_size = input_dim

# 输入层
layer_sizes.append(current_size)

# 隐藏层(Fibonacci序列)
fib_idx = 0
while len(layer_sizes) < 4: # 最多4层
fib_size = FIBONACCI_LAYER_SIZES[fib_idx % len(FIBONACCI_LAYER_SIZES)]
if fib_size >= num_classes:
layer_sizes.append(fib_size)
fib_idx += 1

# 输出层
if layer_sizes[-1] != num_classes:
layer_sizes.append(num_classes)

return PhiQuantumNeuralNetwork(layer_sizes, ActivationFunction.PHI_RELU)

验证条件

  1. 自指性: 学习系统L = L[L]
  2. Fibonacci结构: 层大小遵循N_n = F_n
  3. no-11约束: 神经元激活和量子测量都满足
  4. φ-优化: 学习率按φ^(-n)衰减
  5. 量子相干: 神经元量子态保持相干性