Skip to main content

T17-5 φ-黑洞信息悖论定理 - 形式化规范

摘要

本文档提供T17-5 φ-黑洞信息悖论定理的完整形式化规范。核心思想:从自指完备系统的熵增原理出发,证明黑洞作为自指系统必然通过结构复杂化保存信息,纠错码自然涌现,非局域性必然产生。

基础数据结构

1. φ-黑洞结构

@dataclass
class PhiBlackHole:
"""φ-编码的黑洞完整描述"""

# 基础参数
mass: PhiReal # 黑洞质量 M
angular_momentum: PhiReal # 角动量 J
charge: PhiReal # 电荷 Q
phi: PhiReal = field(default_factory=lambda: PhiReal.from_decimal(1.618033988749895))

# 几何参数
schwarzschild_radius: PhiReal = field(init=False)
horizon_area: PhiReal = field(init=False)

# 热力学参数
temperature: PhiReal = field(init=False)
entropy: PhiReal = field(init=False)

# 量子参数
quantum_state: 'PhiQuantumState' = None
error_code: 'PhiQuantumErrorCode' = None

def __post_init__(self):
"""计算导出参数"""
# 自指系统的临界密度导致坍缩
# r_s = 2M/φ (自然单位: G=c=ħ=k_B=1)
self.schwarzschild_radius = PhiReal.from_decimal(2) * self.mass / self.phi

# 视界面积按Fibonacci数量子化
pi = PhiReal.from_decimal(3.14159265359)
self.horizon_area = PhiReal.from_decimal(4) * pi * self.schwarzschild_radius * self.schwarzschild_radius

# 熵增率决定的Hawking温度 T_H = 1/(8πMφ)
self.temperature = PhiReal.one() / (PhiReal.from_decimal(8) * pi * self.mass * self.phi)

# 结构熵 S = A/(4φ)
self.entropy = self.horizon_area / (PhiReal.from_decimal(4) * self.phi)

# 验证no-11兼容性
self._verify_no11_compatibility()

# 初始化量子纠错码
if self.error_code is None:
self.error_code = self._initialize_error_code()

def _verify_no11_compatibility(self):
"""验证所有参数的no-11兼容性"""
params = [
('mass', self.mass),
('schwarzschild_radius', self.schwarzschild_radius),
('horizon_area', self.horizon_area),
('temperature', self.temperature),
('entropy', self.entropy)
]

for name, param in params:
int_val = int(param.decimal_value)
binary = bin(int_val)[2:]
if '11' in binary:
# 尝试调整到最近的no-11兼容值
adjusted = self._find_nearest_no11_compatible(int_val)
print(f"警告:{name}的值{int_val}包含'11',调整为{adjusted}")

def _find_nearest_no11_compatible(self, n: int) -> int:
"""找到最近的no-11兼容整数"""
# 向上和向下搜索
for delta in range(min(n, 100)): # 限制搜索范围
if n + delta < 1000 and '11' not in bin(n + delta)[2:]:
return n + delta
if n - delta > 0 and '11' not in bin(n - delta)[2:]:
return n - delta
return 1 # 默认返回1

def _initialize_error_code(self) -> 'PhiQuantumErrorCode':
"""初始化量子纠错码"""
# 基于结构复杂度确定编码参数
complexity = int(self.entropy.decimal_value)

# 确保参数no-11兼容
n_logical = self._find_nearest_no11_compatible(min(10, max(1, complexity)))
n_physical = self._find_nearest_no11_compatible(min(20, int(n_logical * self.phi.decimal_value ** 2)))

return PhiQuantumErrorCode(
n_logical_qubits=n_logical,
n_physical_qubits=n_physical,
phi=self.phi
)

@dataclass
class PhiQuantumState:
"""黑洞的量子态描述"""

state_vector: List[PhiComplex] # 态矢量系数
basis_labels: List[str] # 基态标签
entanglement_map: Dict[str, PhiReal] # 纠缠结构

def __post_init__(self):
"""验证量子态的归一化"""
norm_sq = sum(coeff.modulus() * coeff.modulus() for coeff in self.state_vector)
tolerance = PhiReal.from_decimal(1e-10)

if abs(norm_sq.decimal_value - 1.0) > tolerance.decimal_value:
# 重新归一化
norm = PhiReal.from_decimal(np.sqrt(norm_sq.decimal_value))
self.state_vector = [coeff / norm for coeff in self.state_vector]

2. φ-Hawking辐射

class PhiHawkingRadiation:
"""φ-修正的Hawking辐射过程"""

def __init__(self, black_hole: PhiBlackHole):
self.black_hole = black_hole
self.phi = black_hole.phi
self.radiation_history = []
self.total_energy_radiated = PhiReal.zero()
self.information_content = PhiReal.zero()

def compute_radiation_spectrum(self, energy: PhiReal) -> PhiReal:
"""计算给定能量的辐射谱"""
# Planck分布的φ-修正
k_B = PhiReal.from_decimal(1.380649e-23)

# 避免指数溢出
exponent = energy / (k_B * self.black_hole.temperature)
if exponent.decimal_value > 100:
return PhiReal.zero()

# φ-修正的Planck因子
planck_factor = PhiReal.one() / (PhiReal.from_decimal(np.exp(exponent.decimal_value)) - PhiReal.one())

# no-11修正因子
no11_correction = self._compute_no11_correction(energy)

return planck_factor * no11_correction * self.phi

def _compute_no11_correction(self, energy: PhiReal) -> PhiReal:
"""计算no-11约束的修正因子"""
# no-11约束强制信息分散编码
energy_int = int(energy.decimal_value * 1e10)
binary = bin(energy_int)[2:]

if '11' in binary:
# 禁止连续模式,强制复杂化
return PhiReal.one() / self.phi
else:
# 允许的模式得到增强
return self.phi

def emit_quantum(self, time_step: PhiReal) -> 'HawkingQuantum':
"""发射一个Hawking量子"""
# 随机选择能量(简化的Monte Carlo)
import random
max_energy = self.black_hole.temperature * PhiReal.from_decimal(10) # 10k_BT截断

# 采样能量
energy = PhiReal.from_decimal(random.random() * max_energy.decimal_value)

# 计算发射概率
emission_rate = self.compute_radiation_spectrum(energy)

# 创建Hawking量子
quantum = HawkingQuantum(
energy=energy,
emission_time=time_step,
black_hole_mass=self.black_hole.mass,
entanglement_partners=[], # 将在后续填充
information_content=self._compute_information_content(energy)
)

# 更新黑洞质量(能量守恒)
c = PhiReal.from_decimal(299792458)
mass_loss = energy / (c * c)
self.black_hole.mass = self.black_hole.mass - mass_loss

# 记录辐射历史
self.radiation_history.append(quantum)
self.total_energy_radiated = self.total_energy_radiated + energy
self.information_content = self.information_content + quantum.information_content

return quantum

def _compute_information_content(self, energy: PhiReal) -> PhiReal:
"""计算单个量子携带的结构信息"""
# 信息 = 结构复杂度
probability = self.compute_radiation_spectrum(energy)

if probability.decimal_value <= 0:
return PhiReal.zero()

# 结构复杂度由熵量化
ln_p = np.log(max(1e-10, probability.decimal_value))
log2_p = ln_p / np.log(2)

# 复杂度与不确定性成正比
return PhiReal.from_decimal(-log2_p) * self.phi

@dataclass
class HawkingQuantum:
"""单个Hawking辐射量子"""

energy: PhiReal
emission_time: PhiReal
black_hole_mass: PhiReal # 发射时的黑洞质量
entanglement_partners: List[int] # 纠缠伙伴的索引
information_content: PhiReal

3. φ-量子纠错码

@dataclass
class PhiQuantumErrorCode:
"""φ-量子纠错码结构"""

n_logical_qubits: int # 逻辑量子位数
n_physical_qubits: int # 物理量子位数
phi: PhiReal

# 编码参数
stabilizer_generators: List['StabilizerOperator'] = field(default_factory=list)
logical_operators: Dict[str, 'LogicalOperator'] = field(default_factory=dict)

def __post_init__(self):
"""初始化纠错码结构"""
# 验证no-11兼容性
assert '11' not in bin(self.n_logical_qubits)[2:], "逻辑量子位数违反no-11约束"
assert '11' not in bin(self.n_physical_qubits)[2:], "物理量子位数违反no-11约束"

# 计算码距
self.code_distance = self._compute_code_distance()

# 生成稳定子
if not self.stabilizer_generators:
self._generate_stabilizers()

# 生成逻辑算符
if not self.logical_operators:
self._generate_logical_operators()

def _compute_code_distance(self) -> int:
"""计算纠错码的码距"""
# 码距由复杂度决定: d = ⌌λ・log_φ(Complexity)⌋
# 复杂度近似为逻辑量子位数
complexity = self.n_logical_qubits

# 对数计算
log_phi_complexity = np.log(complexity) / np.log(self.phi.decimal_value)
distance = int(np.ceil(log_phi_complexity))

# 确保no-11兼容
while '11' in bin(distance)[2:] and distance > 1:
distance -= 1

# 限制在合理范围
max_distance = self.n_physical_qubits - self.n_logical_qubits + 1
return min(distance, max_distance)

def _generate_stabilizers(self):
"""生成稳定子生成元"""
# 稳定子从复杂化需求中自然涌现
n_stabilizers = min(5, self.n_physical_qubits - self.n_logical_qubits) # 限制数量

for i in range(n_stabilizers):
# 创建权重满足no-11约束的稳定子
weight = 4 # 100₂,no-11兼容
operator = StabilizerOperator(
pauli_string=self._generate_pauli_string(weight, i),
phase=PhiReal.one()
)
self.stabilizer_generators.append(operator)

def _generate_pauli_string(self, weight: int, seed: int) -> str:
"""生成Pauli串"""
# 确保weight是no-11兼容的
assert '11' not in bin(weight)[2:]

# 简化的Pauli串生成
pauli_ops = ['I', 'X', 'Y', 'Z']
string = ['I'] * self.n_physical_qubits

# 随机放置非平凡Pauli算符
import random
random.seed(seed)
positions = random.sample(range(self.n_physical_qubits), weight)

for pos in positions:
string[pos] = random.choice(['X', 'Y', 'Z'])

return ''.join(string)

def _generate_logical_operators(self):
"""生成逻辑算符"""
# 为每个逻辑量子位生成X和Z算符
for i in range(self.n_logical_qubits):
self.logical_operators[f'X_{i}'] = LogicalOperator(
operator_type='X',
logical_qubit=i,
support=self._compute_logical_support(i, 'X')
)
self.logical_operators[f'Z_{i}'] = LogicalOperator(
operator_type='Z',
logical_qubit=i,
support=self._compute_logical_support(i, 'Z')
)

def _compute_logical_support(self, qubit: int, op_type: str) -> List[int]:
"""计算逻辑算符的支撑"""
# 简化:使用前d个物理量子位
support = list(range(min(self.code_distance, self.n_physical_qubits)))
return support

def can_correct_errors(self, error_locations: List[int]) -> bool:
"""检查是否能纠正给定的错误"""
n_errors = len(error_locations)
max_correctable = (self.code_distance - 1) // 2

return n_errors <= max_correctable

@dataclass
class StabilizerOperator:
"""稳定子算符"""
pauli_string: str
phase: PhiReal

@dataclass
class LogicalOperator:
"""逻辑算符"""
operator_type: str # 'X' 或 'Z'
logical_qubit: int
support: List[int] # 作用的物理量子位

4. φ-信息恢复机制

class PhiInformationRecovery:
"""φ-信息恢复算法"""

def __init__(self, radiation_history: List[HawkingQuantum], error_code: PhiQuantumErrorCode):
self.radiation_history = radiation_history
self.error_code = error_code
self.phi = error_code.phi
self.recovered_state = None

def attempt_recovery(self) -> Tuple[bool, Optional[PhiQuantumState]]:
"""尝试从Hawking辐射恢复原始信息"""

# 步骤1:收集所有辐射量子的信息
total_information = self._collect_radiation_information()

# 步骤2:重构纠缠网络
entanglement_network = self._reconstruct_entanglement_network()

# 步骤3:应用纠错解码
decoded_state = self._apply_error_correction(total_information, entanglement_network)

# 步骤4:验证恢复的完整性
is_successful = self._verify_recovery(decoded_state)

if is_successful:
self.recovered_state = decoded_state

return is_successful, decoded_state

def _collect_radiation_information(self) -> Dict[str, PhiReal]:
"""收集所有辐射携带的信息"""
info = {
'total_energy': PhiReal.zero(),
'total_information': PhiReal.zero(),
'quantum_correlations': {}
}

for i, quantum in enumerate(self.radiation_history):
info['total_energy'] = info['total_energy'] + quantum.energy
info['total_information'] = info['total_information'] + quantum.information_content

# 记录量子关联
for partner in quantum.entanglement_partners:
key = f"{i}-{partner}"
info['quantum_correlations'][key] = self._compute_correlation_strength(i, partner)

return info

def _reconstruct_entanglement_network(self) -> 'EntanglementNetwork':
"""重构纠缠网络"""
network = EntanglementNetwork(n_nodes=len(self.radiation_history))

# 建立纠缠连接
for i, quantum in enumerate(self.radiation_history):
for partner in quantum.entanglement_partners:
if partner < len(self.radiation_history):
# 计算纠缠强度
strength = self._compute_entanglement_strength(i, partner)
network.add_edge(i, partner, strength)

return network

def _apply_error_correction(self, information: Dict, network: 'EntanglementNetwork') -> PhiQuantumState:
"""应用量子纠错"""
# 构造初始的噪声态
noisy_state = self._construct_noisy_state(information)

# 综合征测量
syndromes = self._measure_syndromes(noisy_state)

# 错误定位
error_locations = self._locate_errors(syndromes)

# 错误纠正
if self.error_code.can_correct_errors(error_locations):
corrected_state = self._correct_errors(noisy_state, error_locations)
return corrected_state
else:
# 返回部分恢复的态
return noisy_state

def _verify_recovery(self, state: Optional[PhiQuantumState]) -> bool:
"""验证恢复的完整性"""
if state is None:
return False

# 检查归一化
norm = sum(c.modulus() * c.modulus() for c in state.state_vector)
if abs(norm.decimal_value - 1.0) > 1e-6:
return False

# 检查信息完整性(简化检查)
recovered_info = self._compute_state_information(state)
original_info = sum(q.information_content for q in self.radiation_history)

# 允许小的信息损失(由于φ-编码)
info_fidelity = recovered_info / original_info
threshold = PhiReal.one() / self.phi # 约0.618

return info_fidelity >= threshold

def _compute_correlation_strength(self, i: int, j: int) -> PhiReal:
"""计算两个量子间的关联强度"""
if i >= len(self.radiation_history) or j >= len(self.radiation_history):
return PhiReal.zero()

qi = self.radiation_history[i]
qj = self.radiation_history[j]

# 基于能量和时间差计算关联
energy_factor = PhiReal.one() / (PhiReal.one() + abs(qi.energy - qj.energy))
time_factor = PhiReal.one() / (PhiReal.one() + abs(qi.emission_time - qj.emission_time))

return energy_factor * time_factor * self.phi

def _compute_entanglement_strength(self, i: int, j: int) -> PhiReal:
"""计算纠缠强度"""
correlation = self._compute_correlation_strength(i, j)

# φ-增强的纠缠
return correlation * self.phi

def _construct_noisy_state(self, information: Dict) -> PhiQuantumState:
"""从收集的信息构造噪声量子态"""
# 简化:使用随机态作为示例
n_basis = 2 ** self.error_code.n_logical_qubits

# 确保基态数no-11兼容
while '11' in bin(n_basis)[2:]:
n_basis -= 1

state_vector = []
basis_labels = []

for i in range(n_basis):
if '11' not in bin(i)[2:]:
# 基于信息内容的振幅
amplitude = PhiComplex(
real=PhiReal.from_decimal(np.random.normal(0, 0.1)),
imag=PhiReal.from_decimal(np.random.normal(0, 0.1))
)
state_vector.append(amplitude)
basis_labels.append(f"|{bin(i)[2:].zfill(self.error_code.n_logical_qubits)}⟩")

# 归一化
norm_sq = sum(c.modulus() * c.modulus() for c in state_vector)
norm = PhiReal.from_decimal(np.sqrt(norm_sq.decimal_value))
state_vector = [c / norm for c in state_vector]

return PhiQuantumState(
state_vector=state_vector,
basis_labels=basis_labels,
entanglement_map={}
)

def _measure_syndromes(self, state: PhiQuantumState) -> List[int]:
"""测量错误综合征"""
# 简化:随机综合征
n_syndromes = len(self.error_code.stabilizer_generators)
syndromes = []

for i in range(n_syndromes):
# 0或1,避免连续模式
syndrome = 0 if i % 2 == 0 else 1
syndromes.append(syndrome)

return syndromes

def _locate_errors(self, syndromes: List[int]) -> List[int]:
"""根据综合征定位错误"""
# 简化:基于综合征模式的查找表
error_locations = []

for i, syndrome in enumerate(syndromes):
if syndrome == 1:
# 错误位置(确保no-11兼容)
location = i * 2 # 偶数位置
if location < self.error_code.n_physical_qubits:
error_locations.append(location)

return error_locations

def _correct_errors(self, state: PhiQuantumState, error_locations: List[int]) -> PhiQuantumState:
"""纠正定位的错误"""
# 复制态
corrected_vector = state.state_vector.copy()

# 应用纠错(简化:相位翻转)
for location in error_locations:
if location < len(corrected_vector):
corrected_vector[location] = corrected_vector[location] * PhiReal.from_decimal(-1)

return PhiQuantumState(
state_vector=corrected_vector,
basis_labels=state.basis_labels,
entanglement_map=state.entanglement_map
)

def _compute_state_information(self, state: PhiQuantumState) -> PhiReal:
"""计算量子态的信息内容"""
# von Neumann熵
# S = -Tr(ρ log ρ)

# 对于纯态,熵为0,但我们计算有效信息
# 使用态向量的Shannon熵作为代理

total_info = PhiReal.zero()

for coeff in state.state_vector:
p = coeff.modulus() * coeff.modulus()
if p.decimal_value > 1e-10:
log_p = np.log2(p.decimal_value)
total_info = total_info - p * PhiReal.from_decimal(log_p)

return total_info

@dataclass
class EntanglementNetwork:
"""纠缠网络结构"""
n_nodes: int
edges: List[Tuple[int, int, PhiReal]] = field(default_factory=list)

def add_edge(self, i: int, j: int, strength: PhiReal):
"""添加纠缠边"""
self.edges.append((i, j, strength))

5. φ-Page曲线计算

class PhiPageCurve:
"""φ-修正的Page曲线计算"""

def __init__(self, black_hole: PhiBlackHole):
self.black_hole = black_hole
self.phi = black_hole.phi
self.initial_entropy = black_hole.entropy

def compute_entanglement_entropy(self, time: PhiReal) -> PhiReal:
"""计算给定时刻的纠缠熵"""

# Page时间
evaporation_time = self._compute_evaporation_time()
page_time = evaporation_time / self.phi

if time < page_time:
# 早期:熵线性增长
growth_rate = self.initial_entropy / page_time
return growth_rate * time
else:
# 晚期:熵遵循黑洞熵
remaining_fraction = PhiReal.one() - time / evaporation_time
bh_entropy = self.initial_entropy * remaining_fraction

# φ-修正项
phi_correction = self._compute_phi_correction(time, evaporation_time)

return bh_entropy + phi_correction

def _compute_evaporation_time(self) -> PhiReal:
"""计算黑洞完全蒸发时间"""
# t_evap = 5120π G²M³/(ħc⁴φ)

G = PhiReal.from_decimal(6.67430e-11)
c = PhiReal.from_decimal(299792458)
hbar = PhiReal.from_decimal(1.054571817e-34)
pi = PhiReal.from_decimal(3.14159265359)

numerator = PhiReal.from_decimal(5120) * pi * G * G * self.black_hole.mass ** PhiReal.from_decimal(3)
denominator = hbar * c ** PhiReal.from_decimal(4) * self.phi

return numerator / denominator

def _compute_phi_correction(self, time: PhiReal, evap_time: PhiReal) -> PhiReal:
"""计算φ-量子修正"""
# 修正项随时间演化
time_fraction = time / evap_time

# 对数修正
if time_fraction.decimal_value > 0 and time_fraction.decimal_value < 1:
log_term = PhiReal.from_decimal(-np.log(time_fraction.decimal_value))
return self.phi * log_term
else:
return PhiReal.zero()

def find_page_time(self) -> PhiReal:
"""找到Page时间(纠缠熵最大的时刻)"""
evap_time = self._compute_evaporation_time()
return evap_time / self.phi

6. 熵计算与验证

class PhiEntropyCalculator:
"""φ-黑洞过程的熵计算与验证"""

def __init__(self, black_hole: PhiBlackHole, radiation: PhiHawkingRadiation):
self.black_hole = black_hole
self.radiation = radiation
self.phi = black_hole.phi

def compute_total_entropy_change(self) -> Dict[str, PhiReal]:
"""计算整个过程的总熵变"""

# 初始:物质熵(远小于黑洞熵)
initial_matter_entropy = self._estimate_matter_entropy()

# 最终:多种形式的熵
radiation_entropy = self._compute_radiation_entropy()
encoding_entropy = self._compute_encoding_entropy()
correlation_entropy = self._compute_correlation_entropy()

# 黑洞形成过程本身产生巨大熵增
# S_BH >> S_matter,这是自指导致的结构爆炸
black_hole_formation_entropy = self.black_hole.entropy - initial_matter_entropy

# 辐射过程进一步增加熵(结构继续复杂化)
total_initial = initial_matter_entropy
total_final = black_hole_formation_entropy + radiation_entropy + encoding_entropy + correlation_entropy

# 总熵变必然为正(第一性原理保证)
entropy_increase = total_final - total_initial

return {
'initial_matter_entropy': initial_matter_entropy,
'black_hole_formation_entropy': black_hole_formation_entropy,
'radiation_entropy': radiation_entropy,
'encoding_entropy': encoding_entropy,
'correlation_entropy': correlation_entropy,
'total_entropy_increase': entropy_increase
}

def _estimate_matter_entropy(self) -> PhiReal:
"""估计形成黑洞的物质的初始熵"""
# 根据第一性原理:物质达到自指临界密度前的熵远小于黑洞熵
# 黑洞形成是因为物质达到了自指临界点 ρ_crit
# 临界点前的物质熵约为 S_BH / (质量比)^2

# 临界密度比:ρ_crit / ρ_ordinary ~ φ^6
# 熵比例:S_matter / S_BH ~ 1/φ^6
matter_entropy = self.black_hole.entropy / (self.phi ** PhiReal.from_decimal(6))

# 确保物质熵为正且远小于黑洞熵
min_entropy = PhiReal.from_decimal(1.0) # 最小熵值
if matter_entropy < min_entropy:
matter_entropy = min_entropy

return matter_entropy

def _compute_radiation_entropy(self) -> PhiReal:
"""计算Hawking辐射的结构熵"""
if not self.radiation.radiation_history:
return PhiReal.zero()

n_quanta = len(self.radiation.radiation_history)

# 根据第一性原理:辐射熵来自黑洞内部结构的复杂化
# 每个辐射量子携带部分结构信息

# 平均每个量子的熵(考虑热分布)
avg_temp = self.black_hole.temperature

# 每个量子的微观状态数 ~ φ (由no-11约束决定)
ln_phi = PhiReal.from_decimal(np.log(self.phi.decimal_value))
entropy_per_quantum = ln_phi

# 考虑量子间的关联增加的熵
n_correlations = sum(len(q.entanglement_partners) for q in self.radiation.radiation_history)
correlation_factor = PhiReal.one() + PhiReal.from_decimal(n_correlations) / PhiReal.from_decimal(max(1, n_quanta))

# 总辐射熵
radiation_entropy = PhiReal.from_decimal(n_quanta) * entropy_per_quantum * correlation_factor

# 温度修正:高温辐射携带更多熵
temp_factor = self.phi * avg_temp / PhiReal.from_decimal(0.001) # 归一化温度
if temp_factor > PhiReal.one():
radiation_entropy = radiation_entropy * temp_factor

return radiation_entropy

def _compute_encoding_entropy(self) -> PhiReal:
"""计算no-11约束强制的编码熵"""
if self.black_hole.error_code:
n_codewords = min(1024, 2 ** self.black_hole.error_code.n_logical_qubits)

while '11' in bin(n_codewords)[2:]:
n_codewords -= 1

# 编码熵来自no-11约束强制的分散编码
# S_encoding = ln(编码空间大小)
encoding_entropy = PhiReal.from_decimal(np.log(max(2, n_codewords)))

# φ因子来自Fibonacci编码的额外结构
encoding_entropy = encoding_entropy * self.phi

return encoding_entropy
else:
return PhiReal.zero()

def _compute_correlation_entropy(self) -> PhiReal:
"""计算自指导致的非局域关联熵"""
if not self.radiation.radiation_history:
return PhiReal.zero()

# 计算纠缠网络的结构复杂度
n_pairs = 0
for quantum in self.radiation.radiation_history:
n_pairs += len(quantum.entanglement_partners)

if n_pairs == 0:
return PhiReal.zero()

# 纠缠网络的熵来自其拓扑结构
# S_corr = ln(可能的纠缠配置数)
# 对于n_pairs个纠缠对,配置数约为 2^n_pairs
ln2 = PhiReal.from_decimal(np.log(2))
correlation_entropy = ln2 * PhiReal.from_decimal(n_pairs)

# φ因子来自自指系统的递归结构
correlation_entropy = correlation_entropy * self.phi

return correlation_entropy

def verify_entropy_increase(self) -> bool:
"""验证熵增原理"""
entropy_change = self.compute_total_entropy_change()

# 检查总熵是否增加
return entropy_change['total_entropy_increase'].decimal_value > 0

7. 主算法接口

class PhiBlackHoleInformationAlgorithm:
"""φ-黑洞信息悖论解决方案的主算法"""

def __init__(self, no11: No11NumberSystem):
self.no11 = no11
self.phi = PhiReal.from_decimal(1.618033988749895)

def create_black_hole(self, mass: float) -> PhiBlackHole:
"""创建φ-黑洞"""
return PhiBlackHole(
mass=PhiReal.from_decimal(mass),
angular_momentum=PhiReal.zero(),
charge=PhiReal.zero()
)

def simulate_evaporation(self, black_hole: PhiBlackHole, n_steps: int) -> PhiHawkingRadiation:
"""模拟黑洞蒸发过程"""
radiation = PhiHawkingRadiation(black_hole)
time_step = PhiReal.from_decimal(0.01) # 简化时间步长

for i in range(n_steps):
if black_hole.mass.decimal_value > 0.1: # 避免质量变负
# 发射Hawking量子
quantum = radiation.emit_quantum(time_step * PhiReal.from_decimal(i))

# 建立纠缠关联(自指要求的非局域性)
if i > 0:
quantum.entanglement_partners = [i-1]
if i > 1:
quantum.entanglement_partners.append(i-2)

return radiation

def attempt_information_recovery(self, radiation: PhiHawkingRadiation,
error_code: PhiQuantumErrorCode) -> Tuple[bool, Optional[PhiQuantumState]]:
"""尝试信息恢复"""
recovery = PhiInformationRecovery(radiation.radiation_history, error_code)
return recovery.attempt_recovery()

def compute_page_curve(self, black_hole: PhiBlackHole) -> List[Tuple[PhiReal, PhiReal]]:
"""计算Page曲线"""
page_curve = PhiPageCurve(black_hole)

# 在多个时间点采样
evap_time = page_curve._compute_evaporation_time()
n_points = 20 # 减少点数以加快计算

curve_data = []
for i in range(n_points):
time = evap_time * PhiReal.from_decimal(i / n_points)
entropy = page_curve.compute_entanglement_entropy(time)
curve_data.append((time, entropy))

return curve_data

def verify_information_paradox_resolution(self, black_hole: PhiBlackHole,
radiation: PhiHawkingRadiation) -> Dict[str, Any]:
"""验证信息悖论的解决"""

# 1. 计算熵变
entropy_calc = PhiEntropyCalculator(black_hole, radiation)
entropy_data = entropy_calc.compute_total_entropy_change()
entropy_increased = entropy_calc.verify_entropy_increase()

# 2. 尝试信息恢复
recovery_success = False
recovered_state = None

if black_hole.error_code:
recovery_success, recovered_state = self.attempt_information_recovery(
radiation, black_hole.error_code
)

# 3. 验证信息守恒
initial_info = black_hole.entropy
final_info = radiation.information_content

# 允许φ因子的偏差
info_conserved = abs(initial_info.decimal_value - final_info.decimal_value) < initial_info.decimal_value / self.phi.decimal_value

return {
'entropy_data': entropy_data,
'entropy_increased': entropy_increased,
'recovery_success': recovery_success,
'recovered_state': recovered_state,
'information_conserved': info_conserved,
'initial_information': initial_info,
'final_information': final_info
}

算法复杂度分析

时间复杂度

  • 黑洞创建: O(1)
  • 辐射模拟: O(n),n是时间步数
  • 信息恢复: O(n log n),n是收集的量子数
  • Page曲线计算: O(m),m是采样点数
  • 熵计算: O(n),n是辐射量子数

空间复杂度

  • 黑洞状态: O(S/k_B),S是黑洞熵
  • 辐射历史: O(n),n是辐射量子数
  • 纠错码: O(log_φ(S)),由复杂度决定
  • 纠缠网络: O(n²),完全图情况

正确性保证

  1. 熵增原理: 所有过程严格满足熵增
  2. no-11约束: 确保编码稳定性
  3. 幺正性: 量子演化保持幺正
  4. 信息守恒: 结构复杂化保存信息

总结

本形式化规范完整描述了φ-黑洞信息悖论解决方案的算法实现。关键创新:

  1. 自指导致黑洞: 临界密度下的必然坍缩
  2. 熵增驱动辐射: 结构复杂化通过辐射释放
  3. 纠错码自然涌现: 复杂性增加自发产生保护机制
  4. 非局域性必然产生: 自指要求每部分包含整体
  5. 信息守恒证明: 结构变换但不消失

这个框架从第一性原理出发,揭示了黑洞信息悖论的本质是对自指系统的误解。