T13-3 形式化规范:量子φ-计算等价性定理
核心命题
命题 T13-3:量子计算与φ-递归计算在no-11约束下完全等价。
形式化陈述
∀Q : QuantumAlgorithm . ∃Φ : PhiRecursiveAlgorithm .
ComputationallyEquivalent(Q, Φ) ∧
ComplexityPreserving(Q, Φ) ∧
ResourceEquivalent(Q, Φ) ∧
OutputEquivalent(Q, Φ)
其中:
- Q是任意量子算法
- Φ是对应的φ-递归算法
- 所有运算满足no-11约束
形式化组件
1. φ-量子状态空间
PhiQuantumState ≡ record {
amplitudes : List[PhiComplex]
basis_states : List[ZeckendorfBasis]
normalization : PhiReal
no_11_constraint : Boolean
}
PhiComplex ≡ record {
real_part : PhiReal
imag_part : PhiReal
zeckendorf_rep : ZeckendorfRep
}
ZeckendorfBasis ≡ {
indices : List[ℕ]
constraint : ∀i, j ∈ indices . |i - j| ≠ 1
}
PhiReal ≡ record {
coefficients : List[{0, 1}]
exponents : List[ℕ]
phi_power_sum : ℝ
}
2. φ-量子门算子
PhiQuantumGate ≡ record {
matrix : PhiMatrix
arity : ℕ
unitary_check : PhiMatrix → Boolean
no_11_preserving : Boolean
}
PhiMatrix ≡ record {
elements : Array[Array[PhiComplex]]
dimensions : (ℕ, ℕ)
determinant : PhiComplex
}
HadamardPhi : PhiQuantumGate ≡ record {
matrix = (1/√φ) × [[1, 1], [1, -1]]_φ
arity = 1
unitary_check = λM . M × M† = I_φ
no_11_preserving = True
}
PauliXPhi : PhiQuantumGate ≡ record {
matrix = [[0, 1], [1, 0]]_φ
arity = 1
unitary_check = λM . M × M† = I_φ
no_11_preserving = True
}
CNOTPhi : PhiQuantumGate ≡ record {
matrix = [[1,0,0,0], [0,1,0,0], [0,0,0,1], [0,0,1,0]]_φ
arity = 2
unitary_check = λM . M × M† = I_φ
no_11_preserving = True
}
3. φ-量子电路
PhiQuantumCircuit ≡ record {
qubits : ℕ
gates : List[PhiQuantumGate]
depth : ℕ
complexity : PhiComplexity
}
PhiComplexity ≡ record {
time_complexity : ℕ → PhiReal
space_complexity : ℕ → PhiReal
gate_count : ℕ
recursive_depth : ℕ
}
CircuitExecution : PhiQuantumCircuit → PhiQuantumState → PhiQuantumState ≡
λcircuit, initial_state .
Fold(ApplyGate, initial_state, circuit.gates)
ApplyGate : PhiQuantumGate → PhiQuantumState → PhiQuantumState ≡
λgate, state .
if ValidateNo11Constraint(gate, state) then
MatrixVectorMultiply(gate.matrix, state.amplitudes)
else
ERROR("No-11 constraint violation")
4. φ-递归计算模型
PhiRecursiveComputation ≡ record {
recursion_depth : ℕ
self_reference_structure : SelfRefStruct
computation_rules : List[RecursionRule]
termination_condition : Predicate
}
SelfRefStruct ≡ record {
psi_function : PhiFunction
fixed_point : PhiValue
convergence_rate : PhiReal
}
PhiFunction ≡ record {
domain : PhiDomain
codomain : PhiDomain
rule : PhiDomain → PhiDomain
recursive_call : PhiFunction → PhiFunction
}
RecursionRule ≡ record {
pattern : PhiPattern
replacement : PhiExpression
depth_change : ℤ
entropy_change : PhiReal
}
5. 等价性映射
QuantumToPhiMapping : QuantumAlgorithm → PhiRecursiveAlgorithm ≡
λQ . record {
state_mapping = QuantumStateToPhiState(Q.initial_state)
gate_mapping = Map(QuantumGateToPhiRecursion, Q.gates)
measurement_mapping = QuantumMeasurementToPhiProjection(Q.measurement)
complexity_mapping = ComplexityTransform(Q.complexity)
}
QuantumStateToPhiState : QuantumState → PhiQuantumState ≡
λstate . record {
amplitudes = Map(ComplexToPhiComplex, state.amplitudes)
basis_states = Map(BasisToZeckendorf, state.basis)
normalization = RealToPhiReal(state.norm)
no_11_constraint = ValidateConstraint(state)
}
ComplexToPhiComplex : ℂ → PhiComplex ≡
λz . record {
real_part = RealToPhiReal(Re(z))
imag_part = RealToPhiReal(Im(z))
zeckendorf_rep = ComplexToZeckendorf(z)
}
BasisToZeckendorf : BasisState → ZeckendorfBasis ≡
λbasis . record {
indices = BinaryToFibonacciIndices(basis)
constraint = ValidateNo11(indices)
}
6. 复杂度保持定理
theorem ComplexityPreservation:
∀Q : QuantumAlgorithm . ∀Φ : PhiRecursiveAlgorithm .
QuantumToPhiMapping(Q) = Φ →
|TimeComplexity(Q) - TimeComplexity(Φ)| ≤ O(log_φ(InputSize))
proof:
设输入大小为 n
量子算法 Q 的时间复杂度为 T_Q(n)
对应φ-递归算法 Φ 的时间复杂度为 T_Φ(n)
根据映射构造:
1. 每个量子门对应 O(1) 个φ-递归操作
2. 状态映射的开销为 O(log_φ(n))
3. 测量映射的开销为 O(log_φ(n))
因此:T_Φ(n) = T_Q(n) + O(log_φ(n))
∎
7. 量子门的φ-递归实现
HadamardPhiImplementation : PhiRecursiveFunction ≡
λstate . record {
function_type = "superposition_creator"
recursion_rule = λψ . (ψ + φ⁻¹ψ(ψ)) / √φ
depth_bound = 1
no_11_preservation = λinput . ValidateNo11(Apply(recursion_rule, input))
}
CNOTPhiImplementation : PhiRecursiveFunction ≡
λstate1, state2 . record {
function_type = "entanglement_creator"
recursion_rule = λψ₁, ψ₂ .
if ExtractBit(ψ₁) = 0 then (ψ₁, ψ₂)
else (ψ₁, FlipBit(ψ₂))
depth_bound = 2
no_11_preservation = λinput . ValidateNo11(Apply(recursion_rule, input))
}
ExtractBit : PhiQuantumState → {0, 1} ≡
λstate .
let measurement = ProjectToZeckendorfBasis(state) in
if ZeckendorfSum(measurement) mod 2 = 0 then 0 else 1
FlipBit : PhiQuantumState → PhiQuantumState ≡
λstate . ApplyPauliX(state)
8. 量子算法的φ-递归等价实现
GroverPhiAlgorithm : PhiRecursiveAlgorithm ≡ record {
initialization = λn . HadamardPhi^⊗n(|0⟩^⊗n)
oracle = λx . (-1)^f(x) × ZeckendorfPhase(x)
diffusion = λψ . 2|s⟩⟨s| - I where |s⟩ = initialization
iteration_count = ⌊π√(2^n)/4⌋
recursion_depth = O(√(2^n))
}
ZeckendorfPhase : ZeckendorfRep → PhiComplex ≡
λrep . exp(i × ZeckendorfSum(rep) / φ)
ShorPhiAlgorithm : PhiRecursiveAlgorithm ≡ record {
period_finding = λa, N . QuantumFourierTransformPhi(ModularExponentiation(a, N))
modular_exponentiation = λa, x, N . a^x mod N in φ-arithmetic
continued_fractions = λfraction . EuclideanAlgorithmPhi(fraction)
factorization = λp . if p | N then (p, N/p) else retry
recursion_depth = O((log N)³)
}
QuantumFourierTransformPhi : PhiQuantumState → PhiQuantumState ≡
λstate . record {
transform_matrix = (1/√φ^n) × [ω_φ^(jk)]_{j,k=0}^{2^n-1}
omega_phi = exp(2πi/φ^n)
application = MatrixVectorMultiply(transform_matrix, state.amplitudes)
no_11_constraint = ValidateQFTConstraint(result)
}
9. 纠缠熵的φ-递归表达
PhiEntanglementEntropy : PhiQuantumState → PhiReal ≡
λstate .
let reduced_state = PartialTrace(state) in
let eigenvalues = Eigenvalues(reduced_state.density_matrix) in
-Sum(λλ . λ × log_φ(λ), eigenvalues)
RecursiveDepth : SelfRefStruct → ℕ ≡
λstruct .
let fixed_point = FindFixedPoint(struct.psi_function) in
CountRecursionLevels(fixed_point, struct.convergence_rate)
EntanglementRecursionEquivalence : PhiQuantumState → Boolean ≡
λstate .
PhiEntanglementEntropy(state) = log_φ(RecursiveDepth(StateToSelfRef(state)))
StateToSelfRef : PhiQuantumState → SelfRefStruct ≡
λstate . record {
psi_function = ExtractSelfReference(state.amplitudes)
fixed_point = NormalizedState(state)
convergence_rate = CalculateConvergenceRate(state)
}
10. 量子错误纠正的φ-实现
ShorCodePhi : PhiQuantumCode ≡ record {
logical_qubits = 1
physical_qubits = 9
encoding = λ|ψ⟩ . |ψ⟩ → (α|000⟩ + β|111⟩)^⊗3 in φ-encoding
decoding = ProjectToLogicalSubspace
error_correction = SyndromeExtractionPhi
distance = 3
}
StabilizerPhi : PhiStabilizer ≡ record {
generators = List[PhiPauliOperator]
commutation_relations = ∀g₁, g₂ ∈ generators . [g₁, g₂] = 0
logical_operators = {X_L, Z_L} where [X_L, generator] = 0
syndrome_extraction = λerror . Map(λg . ⟨g, error⟩, generators)
}
ErrorCorrectionPhi : PhiQuantumState → ErrorSyndrome → PhiQuantumState ≡
λstate, syndrome .
let error_operator = SyndromeToError(syndrome) in
let corrected_state = ApplyCorrection(error_operator, state) in
if ValidateNo11Constraint(corrected_state) then
corrected_state
else
ApplyPhiConstraintCorrection(corrected_state)
11. 计算复杂度类的φ-等价
PhiBQP : ComplexityClass ≡ {
problems : Set[DecisionProblem]
resource_bound = PolynomialPhiQuantumCircuit
error_probability ≤ 1/3
constraint = ∀circuit ∈ resource_bound . ValidateNo11Constraint(circuit)
}
BQPToPhiBQPReduction : BQP → PhiBQP ≡
λproblem ∈ BQP .
let quantum_circuit = BQPCircuit(problem) in
let phi_circuit = QuantumToPhiMapping(quantum_circuit) in
ConstructPhiBQPProblem(phi_circuit)
PhiBQPToBQPReduction : PhiBQP → BQP ≡
λproblem ∈ PhiBQP .
let phi_circuit = PhiBQPCircuit(problem) in
let quantum_circuit = PhiToQuantumMapping(phi_circuit) in
ConstructBQPProblem(quantum_circuit)
ComplexityClassEquivalence : BQP ≡ PhiBQP ≡
∀P . (P ∈ BQP ↔ P ∈ PhiBQP)
验证条件
1. 状态等价性
- QuantumState ↔ PhiQuantumState 双射映射
- 归一化条件在φ-域中保持
- 叠加原理的φ-递归实现
2. 演化等价性
- 量子门 ↔ φ-递归函数等价
- 酉性在φ-约束下保持
- 时间演化的递归深度有界
3. 测量等价性
- 量子测量 ↔ φ-信息提取等价
- Born规则的φ-递归表达
- 测量塌缩的递归解释
4. 复杂度等价性
- 时间复杂度:误差 ≤ O(log_φ n)
- 空间复杂度:误差 ≤ O(log_φ n)
- 量子资源与φ-递归资源等价
5. no-11约束保持
- 所有中间状态满足约束
- 门操作保持约束
- 错误纠正恢复约束
算法规范
算法1:量子态φ-映射
def quantum_state_to_phi_state(quantum_state: QuantumState) -> PhiQuantumState:
"""将量子态映射为φ-量子态"""
# 前置条件
assert is_normalized(quantum_state)
phi_amplitudes = []
for amplitude in quantum_state.amplitudes:
phi_complex = complex_to_phi_complex(amplitude)
assert validate_no_11_constraint(phi_complex.zeckendorf_rep)
phi_amplitudes.append(phi_complex)
phi_basis = []
for basis_state in quantum_state.basis_states:
zeck_basis = binary_to_zeckendorf_basis(basis_state)
assert validate_no_consecutive_indices(zeck_basis.indices)
phi_basis.append(zeck_basis)
phi_state = PhiQuantumState(
amplitudes=phi_amplitudes,
basis_states=phi_basis,
normalization=calculate_phi_norm(phi_amplitudes),
no_11_constraint=True
)
# 后置条件
assert validate_phi_normalization(phi_state)
assert validate_equivalence(quantum_state, phi_state)
return phi_state
算法2:φ-量子门执行
def apply_phi_quantum_gate(gate: PhiQuantumGate, state: PhiQuantumState) -> PhiQuantumState:
"""执行φ-量子门操作"""
# 前置条件
assert gate.no_11_preserving
assert state.no_11_constraint
# 矩阵向量乘法(φ-算术)
new_amplitudes = []
for i, basis_state in enumerate(state.basis_states):
amplitude_sum = PhiComplex(0, 0)
for j, input_amplitude in enumerate(state.amplitudes):
matrix_element = gate.matrix.elements[i][j]
product = phi_complex_multiply(matrix_element, input_amplitude)
amplitude_sum = phi_complex_add(amplitude_sum, product)
new_amplitudes.append(amplitude_sum)
# 验证no-11约束
for amplitude in new_amplitudes:
assert validate_no_11_constraint(amplitude.zeckendorf_rep)
new_state = PhiQuantumState(
amplitudes=new_amplitudes,
basis_states=state.basis_states,
normalization=calculate_phi_norm(new_amplitudes),
no_11_constraint=True
)
# 后置条件
assert validate_unitarity(gate, state, new_state)
return new_state
算法3:φ-Grover算法
def phi_grover_algorithm(oracle_function: Callable, n_qubits: int) -> PhiQuantumState:
"""φ-递归实现的Grover算法"""
# 初始化:创建均匀叠加态
initial_state = create_phi_superposition(n_qubits)
# 计算迭代次数
N = 2 ** n_qubits
iterations = int(np.pi * np.sqrt(N) / 4)
current_state = initial_state
for _ in range(iterations):
# 应用φ-Oracle
current_state = apply_phi_oracle(oracle_function, current_state)
# 应用φ-扩散算子
current_state = apply_phi_diffusion(current_state, initial_state)
# 验证约束保持
assert current_state.no_11_constraint
return current_state
def apply_phi_oracle(oracle_func: Callable, state: PhiQuantumState) -> PhiQuantumState:
"""应用φ-Oracle操作"""
new_amplitudes = []
for i, amplitude in enumerate(state.amplitudes):
basis_value = zeckendorf_to_integer(state.basis_states[i].indices)
if oracle_func(basis_value):
# 应用相位翻转(φ-编码)
phase_factor = calculate_zeckendorf_phase(basis_value)
new_amplitude = phi_complex_multiply(amplitude, phase_factor)
else:
new_amplitude = amplitude
assert validate_no_11_constraint(new_amplitude.zeckendorf_rep)
new_amplitudes.append(new_amplitude)
return PhiQuantumState(
amplitudes=new_amplitudes,
basis_states=state.basis_states,
normalization=calculate_phi_norm(new_amplitudes),
no_11_constraint=True
)
算法4:φ-量子傅里叶变换
def phi_quantum_fourier_transform(state: PhiQuantumState) -> PhiQuantumState:
"""φ-量子傅里叶变换实现"""
n_qubits = len(state.basis_states).bit_length() - 1
N = 2 ** n_qubits
# 构建φ-QFT矩阵
qft_matrix = create_phi_qft_matrix(N)
# 应用变换
new_amplitudes = []
for k in range(N):
amplitude_sum = PhiComplex(0, 0)
for j in range(N):
omega_power = (j * k) % N
omega_factor = calculate_phi_unit_root(omega_power, N)
original_amplitude = state.amplitudes[j]
product = phi_complex_multiply(omega_factor, original_amplitude)
amplitude_sum = phi_complex_add(amplitude_sum, product)
# 归一化因子
normalized_amplitude = phi_complex_divide(amplitude_sum, phi_sqrt(N))
assert validate_no_11_constraint(normalized_amplitude.zeckendorf_rep)
new_amplitudes.append(normalized_amplitude)
return PhiQuantumState(
amplitudes=new_amplitudes,
basis_states=create_fourier_basis_states(N),
normalization=PhiReal(1.0),
no_11_constraint=True
)
def calculate_phi_unit_root(power: int, N: int) -> PhiComplex:
"""计算φ-单位根"""
angle = 2 * np.pi * power / N
# 转换为φ-复数表示
real_part = phi_cos(angle)
imag_part = phi_sin(angle)
return PhiComplex(real_part, imag_part)
实现注意事项
- φ-算术精度:所有计算必须在φ-数域中进行
- no-11约束检查:每步操作后都需验证约束
- 递归深度管理:控制φ-递归的展开深度
- 误差累积控制:φ-算术的舍入误差处理
- 资源优化:利用φ-递归的并行特性
性能指标
- 等价性精度:量子态映射误差 < φ^(-16)
- 复杂度保持:时间复杂度误差 < O(log_φ n)
- 约束满足率:no-11约束满足率 = 100%
- 资源效率:φ-递归资源利用率 > 90%