T13-2 形式化规范:自适应压缩算法
核心命题
命题 T13-2:在φ编码宇宙中,自适应压缩通过识别递归模式实现深度优化。
形式化陈述
∀S : PhiEncoded . ∃C : Compressor .
depth(C(S)) ≤ depth(S) - log_φ(PatternRegularity(S)) ∧
Unfold(C(S)) = S
其中:
- S是任意φ编码的数据(已满足no-11约束)
- depth衡量递归展开深度
- PatternRegularity衡量S中的规律性
- Unfold是递归展开操作
形式化组件
1. 压缩系统结构
CompressionSystem ≡ record {
encode : Sequence → BitString
decode : BitString → Sequence
window_size : ℕ → ℕ
mode_selector : Window → Mode
compress_rate : Sequence → ℝ
}
AdaptivePhiCompression : CompressionSystem ≡ record {
encode = adaptive_phi_encode
decode = adaptive_phi_decode
window_size = λn . ⌈log₂ n⌉
mode_selector = complexity_based_selector
compress_rate = λS . |encode(S)| / |S|
}
2. φ-熵定义
PhiEntropy : Distribution → ℝ ≡
λP . -∑_{w ∈ ValidPhi} P(w) × log₂(P(w))
ValidPhi : Set[String] ≡
{w : String | ¬contains_11(w)}
StandardEntropy : Distribution → ℝ ≡
λP . -∑_{w ∈ Σ*} P(w) × log₂(P(w))
EntropyRelation :
PhiEntropy(P) = StandardEntropy(P) - log₂(φ) + o(1)
3. 编码模式定义
Mode ≡ Sparse | Dense | Recursive
SparseEncoding ≡ record {
encode : Window → List[(Symbol, ZeckendorfRep)]
decode : List[(Symbol, ZeckendorfRep)] → Window
condition : λw . LocalComplexity(w) < 0.3
}
DenseEncoding ≡ record {
encode : Window → (PhiReal, PhiReal)
decode : (PhiReal, PhiReal) → Window
condition : λw . 0.3 ≤ LocalComplexity(w) < 0.7
}
RecursiveEncoding ≡ record {
encode : Window → RecursiveStructure
decode : RecursiveStructure → Window
condition : λw . LocalComplexity(w) ≥ 0.7 ∧ HasSelfSimilarity(w)
}
4. 局部复杂度度量
LocalComplexity : Window → [0,1] ≡
λw . PhiKolmogorov(w) / |w|
PhiKolmogorov : String → ℕ ≡
λs . min{|p| : Program p ∧ Execute(p) = s ∧ ValidPhi(p)}
WindowComplexityProfile : Sequence → (ℕ → [0,1]) ≡
λS w . Average[LocalComplexity(S[i:i+w]) for i in range(|S|-w)]
5. 自适应选择算法
AdaptiveModeSelector : Window → Mode ≡
λw . if LocalComplexity(w) < 0.3 then Sparse
else if LocalComplexity(w) < 0.7 then Dense
else if DetectSelfSimilarity(w) then Recursive
else Dense
OptimalWindowSize : ℕ → ℕ ≡
λn . argmin_{w} (CompressionOverhead(w) + ExpectedEncodingLength(w))
where
CompressionOverhead(w) = log₂(#modes) / w
ExpectedEncodingLength(w) = w × AveragePhiEntropy
核心定理
定理1:压缩率界限
theorem CompressionRateBound:
∀S : Sequence . ∀A : AdaptivePhiCompression .
CompressRate(A, S) ≤ PhiEntropy(S) + O(log log |S| / log |S|)
proof:
设 w = OptimalWindowSize(|S|) = O(log |S|)
每个窗口的编码包含:
1. 模式标识:log₂(3) 位
2. 模式数据:≤ w × PhiEntropy(S) + o(w) 位
总压缩率 = ∑(模式标识 + 模式数据) / |S|
= |S|/w × (log₂(3) + w × PhiEntropy(S) + o(w)) / |S|
= log₂(3)/w + PhiEntropy(S) + o(1)
= O(log log |S| / log |S|) + PhiEntropy(S)
∎
定理2:模式选择最优性
theorem ModeSelectionOptimality:
∀w : Window .
SelectedMode(w) = argmin_{m ∈ Mode} EncodingLength(m, w)
proof:
对于每种模式,编码长度为:
- Sparse: O(k × log n),k为游程数
- Dense: O(n × H(w)),H为熵
- Recursive: O(|pattern| + t × log n),t为变换数
局部复杂度与最优模式的对应关系:
- Low complexity → Few runs → Sparse optimal
- Medium complexity → High entropy → Dense optimal
- High complexity + self-similarity → Recursive optimal
∎
定理3:递归压缩不动点
theorem RecursiveCompressionFixedPoint:
∃C* : CompressionAlgorithm .
Compress(C*) = C* ∧
|C*| = log₂|S| / (1 - log₂φ)
proof:
设压缩函数为 f(x) = αx + β
不动点条件:f(x*) = x*
解得:x* = β/(1-α)
其中 α = 1/φ (压缩比)
β = log₂|S| (元数据)
因此 |C*| = log₂|S| / (1 - 1/φ) = log₂|S| / (1 - log₂φ)
∎
算法规范
算法1:主压缩流程
def adaptive_phi_compress(data: Sequence) -> BitString:
"""自适应φ压缩主算法"""
# 前置条件
assert len(data) > 0
# 确定最优窗口大小
w = optimal_window_size(len(data))
compressed = []
for i in range(0, len(data), w):
window = data[i:i+w]
# 计算局部特征
complexity = local_complexity(window)
mode = select_mode(complexity)
# 根据模式编码
if mode == Mode.SPARSE:
encoded = sparse_encode(window)
elif mode == Mode.DENSE:
encoded = dense_encode(window)
else: # RECURSIVE
encoded = recursive_encode(window)
compressed.append((mode, encoded))
# 后置条件
assert can_decode(compressed, data)
return pack_compressed(compressed)
算法2:稀疏编码实现
def sparse_encode(window: Window) -> SparseCoding:
"""游程编码的φ变体"""
runs = []
i = 0
while i < len(window):
# 找到游程
symbol = window[i]
length = 1
while i + length < len(window) and window[i + length] == symbol:
length += 1
# 使用Zeckendorf编码长度
zeck_length = to_zeckendorf(length)
runs.append((symbol, zeck_length))
i += length
# 验证no-11约束
for _, zeck in runs:
assert is_valid_phi(zeck)
return runs
算法3:密集编码实现
def dense_encode(window: Window) -> DenseCoding:
"""算术编码的φ变体"""
# 统计符号频率
freq = compute_frequency(window)
# 构建φ进制累积概率表
cumulative = build_phi_cumulative(freq)
# 算术编码过程
low, high = PhiReal(0), PhiReal(1)
for symbol in window:
range_width = high - low
high = low + range_width * cumulative[symbol + 1]
low = low + range_width * cumulative[symbol]
# 选择区间内的φ进制数
code = select_phi_number(low, high)
return (code, len(window))
算法4:递归编码实现
def recursive_encode(window: Window) -> RecursiveCoding:
"""自相似结构的递归编码"""
# 模式检测
pattern, occurrences = detect_pattern(window)
if pattern and len(occurrences) > 2:
# 递归压缩模式
compressed_pattern = adaptive_phi_compress(pattern)
# 编码变换序列
transforms = []
for occ in occurrences:
trans = compute_transform(pattern, occ)
transforms.append(encode_transform(trans))
# 编码残差
residual = compute_residual(window, pattern, occurrences)
compressed_residual = adaptive_phi_compress(residual)
return RecursiveCoding(
pattern=compressed_pattern,
transforms=transforms,
residual=compressed_residual
)
else:
# 退化到密集编码
return RecursiveCoding(fallback=dense_encode(window))
验证条件
1. 压缩正确性
- decode(encode(S)) = S
- |encode(S)| < |S| (对于可压缩数据)
- 保持no-11约束
2. 渐近最优性
- 压缩率趋近φ-熵
- 额外开销 = O(log log n / log n)
- 对所有数据类型有效
3. 模式选择有效性
- 每种模式在其适用范围内最优
- 模式切换开销最小
- 自适应阈值收敛
4. 计算效率
- 编码时间:O(n log n)
- 解码时间:O(n)
- 空间复杂度:O(√n)
实现注意事项
- 数值精度:φ进制运算需要高精度
- 模式检测:使用后缀数组加速
- 并行化:窗口间可并行处理
- 流式处理:支持在线压缩
- 错误恢复:添加同步标记