T10-6 CFT-AdS对偶实现形式化规范
1. 基础数学对象
1.1 共形场论(CFT)结构
class ConformalFieldTheory:
def __init__(self, central_charge: float):
self.c = central_charge
self.phi = (1 + np.sqrt(5)) / 2
self.operators = {}
self.correlation_functions = {}
def add_primary_operator(self, name: str, dimension: 'PhiNumber'):
"""添加初级算符"""
self.operators[name] = PrimaryOperator(name, dimension)
def conformal_transformation(self, x: np.ndarray,
a: int, b: int, c: int, d: int) -> np.ndarray:
"""离散共形变换 (满足no-11约束)"""
if not self.verify_no_11([a, b, c, d]):
raise ValueError("Parameters violate no-11 constraint")
if a*d - b*c != 1:
raise ValueError("Not a valid SL(2,Z) transformation")
return (a*x + b) / (c*x + d)
def two_point_function(self, op1: 'Operator', op2: 'Operator',
x1: np.ndarray, x2: np.ndarray) -> 'PhiNumber':
"""计算两点关联函数"""
if op1.dimension != op2.dimension:
return PhiNumber(0)
distance = np.linalg.norm(x1 - x2)
return PhiNumber(1 / distance ** (2 * op1.dimension.value))
def verify_no_11(self, params: List[int]) -> bool:
"""验证参数不含11模式"""
for p in params:
if '11' in bin(abs(p))[2:]:
return False
return True
1.2 AdS空间结构
class AntiDeSitterSpace:
def __init__(self, dimension: int, ads_radius: float):
self.d = dimension
self.ell = ads_radius # AdS半径
self.phi = (1 + np.sqrt(5)) / 2
def metric(self, r: float, x: np.ndarray) -> np.ndarray:
"""φ-修正的AdS度规"""
# ds² = ℓ²(dr²/(r²/φ^(2ρ)) + η_μν dx^μ dx^ν/(r²/φ^(2ρ)))
rho = int(np.log(r) / np.log(self.phi))
factor = (r ** 2) / (self.phi ** (2 * rho))
g = np.zeros((self.d, self.d))
g[0, 0] = self.ell ** 2 / factor # grr
for i in range(1, self.d):
g[i, i] = self.ell ** 2 / factor # gxx, gyy, ...
return g
def geodesic_distance(self, boundary_point1: np.ndarray,
boundary_point2: np.ndarray) -> 'PhiNumber':
"""计算连接两个边界点的测地线长度"""
delta_x = np.linalg.norm(boundary_point1 - boundary_point2)
# 正规化测地线长度
length = self.ell * np.log(2 * delta_x / self.epsilon)
# φ-修正
depth = int(np.log(delta_x) / np.log(self.phi))
correction = sum(1/self.phi**n for n in range(1, depth+1))
return PhiNumber(length + correction)
def minimal_surface_area(self, boundary_region: 'Region') -> 'PhiNumber':
"""计算延伸到体内的极小曲面面积"""
# Ryu-Takayanagi公式的实现
perimeter = boundary_region.perimeter()
depth = boundary_region.recursive_depth()
# 经典面积
area_classical = self.ell * perimeter * np.log(perimeter / self.epsilon)
# φ-修正
area_correction = area_classical / (self.phi ** depth)
return PhiNumber(area_classical - area_correction)
1.3 全息对偶映射
class HolographicDuality:
def __init__(self, cft: 'ConformalFieldTheory', ads: 'AntiDeSitterSpace'):
self.cft = cft
self.ads = ads
self.phi = (1 + np.sqrt(5)) / 2
self.G_N = 1.0 # Newton常数(归一化)
def depth_to_scale(self, depth: int) -> 'PhiNumber':
"""递归深度到能量标度的映射"""
return PhiNumber(self.phi ** depth)
def radius_to_rg_flow(self, r: float) -> float:
"""径向坐标到RG流参数的映射"""
return np.log(r) / np.log(self.phi)
def gkpw_relation(self, bulk_field: 'BulkField',
boundary_source: 'BoundarySource') -> 'PhiNumber':
"""GKPW关系: <O> = δS_bulk/δφ_0"""
# 计算体作用量对边界值的变分
variation = self.compute_variation(bulk_field, boundary_source)
return variation
def partition_function_equality(self, boundary_source: 'BoundarySource') -> bool:
"""验证配分函数相等: Z_CFT[φ_0] = Z_AdS[Φ|_∂=φ_0]"""
z_cft = self.cft.partition_function(boundary_source)
z_ads = self.ads.partition_function_with_bc(boundary_source)
return abs(z_cft.value - z_ads.value) < 1e-10
2. 递归深度与全息维度
2.1 深度-半径对应
class DepthRadiusCorrespondence:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.ell_ads = 1.0 # AdS半径
def depth_to_radius(self, depth: int) -> float:
"""递归深度到径向坐标的映射"""
return self.ell_ads * self.phi ** depth
def radius_to_depth(self, r: float) -> int:
"""径向坐标到递归深度的映射"""
return int(np.log(r / self.ell_ads) / np.log(self.phi))
def bulk_reconstruction(self, boundary_data: Dict[np.ndarray, 'PhiNumber'],
r: float) -> 'PhiNumber':
"""HKLL体重构"""
depth = self.radius_to_depth(r)
result = PhiNumber(0)
for x, value in boundary_data.items():
# 构造smearing函数
kernel = self.hkll_kernel(x, r)
result = result + kernel * value
return result
def hkll_kernel(self, boundary_point: np.ndarray,
bulk_radius: float) -> 'PhiNumber':
"""HKLL核函数(φ-修正)"""
delta = self.cft.operators['O'].dimension
distance_sq = bulk_radius ** 2 + np.linalg.norm(boundary_point) ** 2
# 经典核
kernel_classical = 1 / (distance_sq ** delta.value)
# φ-修正(来自no-11约束的频率截断)
n_max = int(np.log(distance_sq) / np.log(self.phi))
correction = sum(self.phi ** (-n * delta.value)
for n in range(1, n_max+1)
if '11' not in bin(n)[2:])
return PhiNumber(kernel_classical * (1 + correction))
2.2 全息RG流
class HolographicRGFlow:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def beta_function(self, coupling: 'PhiNumber', operator_dim: float) -> 'PhiNumber':
"""β函数"""
# β = (d - Δ) * g
d = 2 # 边界维度
return PhiNumber((d - operator_dim) * coupling.value)
def rg_flow_equation(self, couplings: Dict[str, 'PhiNumber'],
r: float) -> Dict[str, 'PhiNumber']:
"""全息RG流方程"""
new_couplings = {}
for name, g in couplings.items():
dim = self.operator_dimensions[name]
beta = self.beta_function(g, dim)
# 径向演化 ≈ RG流
dr = 0.01 # 小步长
new_couplings[name] = g + beta * dr / self.ell_ads
return new_couplings
def fixed_points(self) -> List[Dict[str, 'PhiNumber']]:
"""寻找RG不动点"""
fixed_points = []
# φ-系统的不动点: g* = g_0 * φ^(-n)
for n in range(10):
if '11' not in bin(n)[2:]:
g_star = PhiNumber(1.0 / (self.phi ** n))
fixed_points.append({'g': g_star})
return fixed_points
3. 全息纠缠熵
3.1 Ryu-Takayanagi公式
class HolographicEntanglementEntropy:
def __init__(self, ads: 'AntiDeSitterSpace'):
self.ads = ads
self.phi = (1 + np.sqrt(5)) / 2
self.G_N = 1.0 # Newton常数
def entanglement_entropy(self, region: 'BoundaryRegion') -> 'PhiNumber':
"""计算纠缠熵(RT公式)"""
# 找到极小曲面
minimal_surface = self.find_minimal_surface(region)
# 计算面积
area = minimal_surface.area()
# 递归深度修正
depth = region.recursive_depth()
# S_A = Area(γ_A) / (4 G_N φ^d_A)
entropy = area / (4 * self.G_N * (self.phi ** depth))
return entropy
def find_minimal_surface(self, boundary_region: 'BoundaryRegion') -> 'Surface':
"""寻找极小曲面"""
# 变分问题: δArea = 0
# 使用数值方法求解
# 初始猜测: 半球面
initial_surface = self.hemisphere_ansatz(boundary_region)
# 迭代优化
surface = initial_surface
for iteration in range(100):
variation = self.compute_area_variation(surface)
if variation.value < 1e-6:
break
surface = self.update_surface(surface, variation)
return surface
def mutual_information(self, region_a: 'BoundaryRegion',
region_b: 'BoundaryRegion') -> 'PhiNumber':
"""互信息"""
s_a = self.entanglement_entropy(region_a)
s_b = self.entanglement_entropy(region_b)
s_ab = self.entanglement_entropy(region_a.union(region_b))
return s_a + s_b - s_ab
3.2 量子修正
class QuantumCorrections:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def one_loop_correction(self, surface: 'Surface') -> 'PhiNumber':
"""单圈量子修正"""
# 来自体内场的量子涨落
determinant = self.functional_determinant(surface)
# φ-修正来自no-11约束的模式截断
n_modes = surface.mode_count()
phi_factor = sum(1/self.phi**n for n in range(1, n_modes+1)
if '11' not in bin(n)[2:])
return PhiNumber(-0.5 * np.log(determinant) * phi_factor)
def entanglement_wedge_reconstruction(self,
boundary_region: 'BoundaryRegion') -> 'BulkRegion':
"""纠缠楔重构"""
# 找到RT面
rt_surface = self.find_minimal_surface(boundary_region)
# 纠缠楔是RT面和边界区域围成的体区域
wedge = BulkRegion(boundary_region, rt_surface)
# 验证子区域对偶性
assert self.verify_subregion_duality(boundary_region, wedge)
return wedge
4. 全息复杂度
4.1 复杂度=体积
class HolographicComplexity:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.G_N = 1.0
self.ell = 1.0 # AdS半径
def complexity_volume(self, boundary_time_slice: 'TimeSlice') -> 'PhiNumber':
"""CV猜想: 复杂度 = 体积"""
# 找到极大体积片
maximal_slice = self.find_maximal_volume_slice(boundary_time_slice)
# 计算体积
volume = maximal_slice.volume()
# 平均递归深度
avg_depth = maximal_slice.average_recursive_depth()
# C = V / (φ^d G_N ℓ)
complexity = volume / (self.phi ** avg_depth * self.G_N * self.ell)
return complexity
def complexity_action(self, boundary_time_slice: 'TimeSlice') -> 'PhiNumber':
"""CA猜想: 复杂度 = 作用量"""
# Wheeler-DeWitt片
wdw_patch = self.wheeler_dewitt_patch(boundary_time_slice)
# 计算作用量
action = self.evaluate_action(wdw_patch)
# φ-修正
depth_factor = wdw_patch.boundary_depth_factor()
return action / (self.phi ** depth_factor)
def complexity_growth_rate(self, black_hole_mass: float) -> 'PhiNumber':
"""复杂度增长率(Lloyd界)"""
# dC/dt ≤ 2M/π (Lloyd bound)
# φ-修正来自离散时间步
classical_bound = 2 * black_hole_mass / np.pi
# 时间离散化修正
time_step = 1 / self.phi # 最小时间步
discrete_factor = 1 - 1/self.phi
return PhiNumber(classical_bound * discrete_factor)
4.2 张量网络实现
class TensorNetwork:
def __init__(self, boundary_size: int):
self.phi = (1 + np.sqrt(5)) / 2
self.boundary_size = boundary_size
self.network = self.build_mera_network()
def build_mera_network(self) -> 'NetworkStructure':
"""构建φ-MERA张量网络"""
layers = []
current_size = self.boundary_size
while current_size > 1:
# 每层的张量
layer = []
# Disentangler
for i in range(0, current_size-1, 2):
if self.verify_no_11_indices(i, i+1):
disentangler = self.create_disentangler(i, i+1)
layer.append(disentangler)
# Isometry (粗粒化)
new_size = int(current_size / self.phi)
for i in range(new_size):
isometry = self.create_isometry(i)
layer.append(isometry)
layers.append(layer)
current_size = new_size
return NetworkStructure(layers)
def entanglement_entropy_tn(self, region: List[int]) -> 'PhiNumber':
"""用张量网络计算纠缠熵"""
# 收缩网络得到约化密度矩阵
rho = self.contract_to_reduced_density_matrix(region)
# 计算von Neumann熵
eigenvalues = np.linalg.eigvals(rho)
entropy = -sum(λ * np.log(λ) for λ in eigenvalues if λ > 1e-10)
# φ-修正
depth = len(self.network.layers)
correction = entropy / (self.phi ** (depth/2))
return PhiNumber(entropy - correction)
5. 黑洞热化对偶
5.1 BTZ黑洞
class BTZBlackHole:
def __init__(self, mass: float, ads_radius: float):
self.M = mass
self.ell = ads_radius
self.phi = (1 + np.sqrt(5)) / 2
self.r_plus = self.ell * np.sqrt(8 * self.G_N * self.M)
def temperature(self) -> 'PhiNumber':
"""Hawking温度(φ-修正)"""
# 递归深度
d_plus = int(np.log(self.r_plus) / np.log(self.phi))
# T = r_+ / (2π ℓ φ^d_+)
temp = self.r_plus / (2 * np.pi * self.ell * (self.phi ** d_plus))
return PhiNumber(temp)
def entropy(self) -> 'PhiNumber':
"""Bekenstein-Hawking熵"""
# S = 2π r_+ / (4 G_N)
s_bh = 2 * np.pi * self.r_plus / (4 * self.G_N)
# φ-修正
depth_correction = 1 / (self.phi ** int(np.log(self.r_plus) / np.log(self.phi)))
return PhiNumber(s_bh * (1 - depth_correction))
def corresponds_to_thermal_cft(self, cft: 'ConformalFieldTheory') -> bool:
"""验证对应热CFT态"""
T_bh = self.temperature()
T_cft = cft.temperature()
return abs(T_bh.value - T_cft.value) < 1e-6
5.2 Page曲线
class PageCurve:
def __init__(self, black_hole: 'BTZBlackHole'):
self.bh = black_hole
self.phi = (1 + np.sqrt(5)) / 2
def entanglement_entropy_evolution(self, time: float) -> 'PhiNumber':
"""纠缠熵随时间演化"""
# 早期:线性增长
if time < self.page_time():
s_thermal = self.thermal_entropy(time)
return s_thermal
else:
# 晚期:island贡献
s_island = self.island_entropy(time)
s_thermal = self.thermal_entropy(time)
# 取最小值
return PhiNumber(min(s_island.value, s_thermal.value))
def page_time(self) -> float:
"""Page时间"""
# t_Page = (3/2) * S_BH / c
# φ-修正来自离散时间演化
s_bh = self.bh.entropy()
c = 1 # 中心荷(简化)
t_classical = 1.5 * s_bh.value / c
t_discrete = t_classical * (1 + 1/self.phi)
return t_discrete
def island_entropy(self, time: float) -> 'PhiNumber':
"""岛屿贡献的熵"""
# S = S_BH + S_bulk[radiation ∪ island]
s_bh = self.bh.entropy()
# 体熵的计算(简化模型)
island_size = self.island_extent(time)
s_bulk = PhiNumber(island_size * np.log(island_size))
return s_bh + s_bulk
6. 可观测量计算
6.1 关联函数
class CorrelationFunctions:
def __init__(self, duality: 'HolographicDuality'):
self.duality = duality
self.phi = (1 + np.sqrt(5)) / 2
def two_point_function_holographic(self, x1: np.ndarray,
x2: np.ndarray,
operator: 'Operator') -> 'PhiNumber':
"""全息计算两点函数"""
# 计算测地线长度
geodesic_length = self.duality.ads.geodesic_distance(x1, x2)
# <O(x1)O(x2)> = exp(-m * L)
mass = operator.ads_mass()
correlator = np.exp(-mass * geodesic_length.value)
# φ-修正
distance = np.linalg.norm(x1 - x2)
depth = int(np.log(distance) / np.log(self.phi))
correction = self.step_function_correction(distance, depth)
return PhiNumber(correlator * correction)
def wilson_loop(self, contour: 'Contour') -> 'PhiNumber':
"""Wilson环期望值"""
# 找到最小面积曲面
minimal_surface = self.find_minimal_surface_with_boundary(contour)
area = minimal_surface.area()
# <W[C]> = exp(-Area/φ^d)
depth = contour.recursive_depth()
return PhiNumber(np.exp(-area / (self.phi ** depth)))
6.2 输运系数
class TransportCoefficients:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def shear_viscosity_entropy_ratio(self, temperature: float) -> 'PhiNumber':
"""剪切粘度/熵密度比(KSS界)"""
# η/s ≥ 1/(4π) * (1 - 1/φ^d)
# 温度决定深度
depth = int(-np.log(temperature) / np.log(self.phi))
kss_bound = 1 / (4 * np.pi)
phi_correction = 1 - 1 / (self.phi ** depth)
return PhiNumber(kss_bound * phi_correction)
def dc_conductivity(self, temperature: float,
chemical_potential: float) -> 'PhiNumber':
"""直流电导率"""
# 使用膜范式计算
# horizon电导率
sigma_horizon = 1.0 # 归一化
# φ-修正来自离散动量模式
n_modes = int(temperature * self.phi)
correction = sum(1/(1 + (n/self.phi)**2)
for n in range(1, n_modes+1)
if '11' not in bin(n)[2:])
return PhiNumber(sigma_horizon * (1 + correction))
7. 全息纠错码
7.1 量子纠错
class HolographicErrorCorrection:
def __init__(self, code_distance: int):
self.d = code_distance
self.phi = (1 + np.sqrt(5)) / 2
def encoding_map(self, logical_state: 'QuantumState') -> 'QuantumState':
"""逻辑态到物理态的编码"""
# 边界态 -> 体态
n_physical = int(self.phi ** self.d)
# 创建纠缠态
physical_state = self.create_ghz_like_state(n_physical)
# 编码逻辑信息
encoded = self.tensor_product_encoding(logical_state, physical_state)
return encoded
def can_correct_errors(self, error_weight: int) -> bool:
"""判断是否能纠正给定权重的错误"""
# 纠错条件: d > 2*log_φ(error_weight) + 1
threshold = 2 * np.log(error_weight) / np.log(self.phi) + 1
return self.d > threshold
def recovery_map(self, corrupted_state: 'QuantumState',
error_syndrome: 'Syndrome') -> 'QuantumState':
"""恢复映射"""
# 使用全息性质:局部信息可从全局恢复
# 识别错误位置
error_locations = self.decode_syndrome(error_syndrome)
# 应用修正
corrected = corrupted_state.copy()
for loc in error_locations:
corrected = self.apply_correction(corrected, loc)
return corrected
8. 验证函数
8.1 对偶验证
def verify_holographic_duality(cft: 'ConformalFieldTheory',
ads: 'AntiDeSitterSpace') -> bool:
"""验证全息对偶的成立"""
duality = HolographicDuality(cft, ads)
# 1. 配分函数相等
test_source = BoundarySource(lambda x: np.exp(-x**2))
if not duality.partition_function_equality(test_source):
return False
# 2. GKPW关系
bulk_field = BulkField(ads)
vev = duality.gkpw_relation(bulk_field, test_source)
expected_vev = cft.one_point_function(test_source)
if abs(vev.value - expected_vev.value) > 1e-6:
return False
# 3. RT公式
region = BoundaryRegion([0, 1]) # 区间[0,1]
s_cft = cft.entanglement_entropy(region)
s_holographic = HolographicEntanglementEntropy(ads).entanglement_entropy(region)
if abs(s_cft.value - s_holographic.value) > 1e-6:
return False
return True
8.2 物理一致性检查
def check_physical_consistency(duality: 'HolographicDuality') -> Dict[str, bool]:
"""检查物理一致性"""
results = {}
# 1. 因果性
results['causality'] = check_bulk_causality(duality.ads)
# 2. 幺正性
results['unitarity'] = check_boundary_unitarity(duality.cft)
# 3. 能量条件
results['energy_conditions'] = check_energy_conditions(duality.ads)
# 4. 纠缠熵的强次可加性
results['strong_subadditivity'] = check_entanglement_inequalities(duality)
return results
9. 关键常数
# 基础常数
PHI = (1 + np.sqrt(5)) / 2 # 黄金分割率
# AdS/CFT参数
NEWTON_CONSTANT = 1.0 # 归一化的Newton常数
ADS_RADIUS = 1.0 # AdS半径
CENTRAL_CHARGE = 1.0 # 中心荷(最小值)
# 全息参数
RT_CUTOFF = 1e-6 # RT面的UV截断
PAGE_TIME_FACTOR = 1.5 # Page时间系数
KSS_BOUND = 1/(4*np.pi) # KSS粘度界
# 纠错参数
CODE_RATE = 1/PHI # 编码率
ERROR_THRESHOLD = 1/(2*PHI) # 错误阈值
10. 错误处理
class HolographicError(Exception):
"""全息对偶错误基类"""
class DualityBreakdownError(HolographicError):
"""对偶破坏错误"""
class CausalityViolationError(HolographicError):
"""因果性违反"""
class BulkReconstructionError(HolographicError):
"""体重构失败"""
class EntanglementWedgeError(HolographicError):
"""纠缠楔错误"""