Skip to main content

T10-5 NP-P Collapse转化形式化规范

1. 基础数学对象

1.1 φ-计算模型

class PhiTuringMachine:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.tape = [] # No-11 constrained binary tape
self.state = 0
self.head_position = 0

def verify_no_11_constraint(self) -> bool:
"""验证带上无连续11"""
tape_string = ''.join(map(str, self.tape))
return '11' not in tape_string

def step(self) -> bool:
"""单步计算,返回是否继续"""
if not self.verify_no_11_constraint():
raise ValueError("No-11 constraint violated")
# 状态转移逻辑

def compute_time_complexity(self, input_size: int) -> 'PhiNumber':
"""计算时间复杂度"""

1.2 复杂度类定义

class ComplexityClass:
def __init__(self, name: str):
self.name = name
self.phi = (1 + np.sqrt(5)) / 2

class P_phi(ComplexityClass):
def __init__(self):
super().__init__("P_φ")

def contains(self, problem: 'Problem', depth: int) -> bool:
"""判断问题在深度d时是否属于P_φ"""
time_bound = problem.size ** depth
return problem.solvable_in_time(time_bound)

class NP_phi(ComplexityClass):
def __init__(self):
super().__init__("NP_φ")

def contains(self, problem: 'Problem', depth: int) -> bool:
"""判断问题在深度d时是否属于NP_φ"""
verify_time = problem.size ** depth
return problem.verifiable_in_time(verify_time)

1.3 递归深度函数

class RecursiveDepth:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def compute(self, problem_instance: 'Instance') -> int:
"""计算问题实例的递归深度"""
entropy = self.compute_entropy(problem_instance)
return int(np.log(entropy + 1) / np.log(self.phi))

def critical_depth(self, problem_size: int) -> 'PhiNumber':
"""计算临界深度"""
return PhiNumber(self.phi ** np.sqrt(problem_size))

def is_collapsible(self, instance: 'Instance') -> bool:
"""判断实例是否可坍缩"""
depth = self.compute(instance)
critical = self.critical_depth(instance.size)
return depth < critical.value

2. 搜索空间压缩

2.1 约束搜索空间

class ConstrainedSearchSpace:
def __init__(self, n: int):
self.n = n
self.phi = (1 + np.sqrt(5)) / 2
self.compression_factor = 0.306 # γ ≈ 0.306

def classical_size(self) -> int:
"""经典搜索空间大小"""
return 2 ** self.n

def phi_constrained_size(self) -> 'PhiNumber':
"""φ约束搜索空间大小"""
# |Ω_NP^φ| = |Ω_NP| * φ^(-γn)
classical = self.classical_size()
compression = self.phi ** (-self.compression_factor * self.n)
return PhiNumber(classical * compression)

def enumerate_valid_strings(self) -> List[str]:
"""枚举所有满足no-11约束的串"""
valid = []
for i in range(2 ** self.n):
binary = format(i, f'0{self.n}b')
if '11' not in binary:
valid.append(binary)
return valid

def compression_ratio(self) -> float:
"""计算压缩比"""
return len(self.enumerate_valid_strings()) / self.classical_size()

2.2 Fibonacci搜索模式

class FibonacciSearchPattern:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.fib_cache = {}

def fibonacci(self, n: int) -> int:
"""计算第n个Fibonacci数"""
if n in self.fib_cache:
return self.fib_cache[n]
if n <= 1:
return n
result = self.fibonacci(n-1) + self.fibonacci(n-2)
self.fib_cache[n] = result
return result

def valid_configurations(self, length: int) -> int:
"""长度为n的有效配置数(无11)"""
# 等于F_{n+2}
return self.fibonacci(length + 2)

def search_tree_pruning(self, depth: int) -> float:
"""搜索树剪枝比例"""
full_tree = 2 ** depth
pruned_tree = self.valid_configurations(depth)
return 1 - (pruned_tree / full_tree)

3. 坍缩机制

3.1 深度诱导坍缩

class DepthInducedCollapse:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def time_complexity_reduction(self, n: int, depth: int) -> 'PhiNumber':
"""计算时间复杂度降低"""
# TIME_φ(2^n) ⊆ TIME_φ(n^(d*log φ))
if depth >= np.log(n) / np.log(self.phi):
# 无坍缩
return PhiNumber(2 ** n)
else:
# 坍缩到多项式
exponent = depth * np.log(self.phi)
return PhiNumber(n ** exponent)

def decompose_problem(self, problem: 'Problem', depth: int) -> List['Problem']:
"""根据深度分解问题"""
num_subproblems = int(self.phi ** depth)
subproblem_size = problem.size / num_subproblems

subproblems = []
for i in range(num_subproblems):
sub = problem.create_subproblem(i, subproblem_size)
subproblems.append(sub)

return subproblems

def solve_by_decomposition(self, problem: 'Problem', depth: int) -> 'Solution':
"""通过分解求解"""
if problem.size < threshold:
return problem.solve_directly()

subproblems = self.decompose_problem(problem, depth)
subsolutions = [self.solve_by_decomposition(sub, depth-1)
for sub in subproblems]

return problem.combine_solutions(subsolutions)

3.2 验证-搜索对称性

class VerifySearchSymmetry:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def verify_certificate(self, instance: 'Instance',
certificate: 'Certificate') -> bool:
"""验证证书"""
# φ系统中的验证过程
return self.phi_verify(instance, certificate)

def search_from_verification(self, instance: 'Instance',
verification_trace: List) -> 'Solution':
"""从验证过程重构搜索"""
# 利用验证轨迹反向构造解
search_path = self.reverse_verification_trace(verification_trace)
return self.follow_search_path(instance, search_path)

def entropy_guided_search(self, instance: 'Instance') -> 'Solution':
"""熵导向搜索"""
current_state = instance.initial_state()

while not self.is_solution(current_state):
# 选择熵增方向
next_states = self.get_successors(current_state)
next_state = max(next_states,
key=lambda s: self.compute_entropy(s))
current_state = next_state

return self.extract_solution(current_state)

4. 具体问题实现

4.1 φ-SAT求解器

class PhiSATSolver:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def solve(self, formula: 'CNFFormula') -> Optional[Dict[str, bool]]:
"""求解SAT问题"""
depth = self.compute_formula_depth(formula)

if self.is_easy_case(formula, depth):
return self.polynomial_solve(formula)
else:
return self.exponential_solve(formula)

def is_easy_case(self, formula: 'CNFFormula', depth: int) -> bool:
"""判断是否为易解情况"""
n = formula.num_variables
m = formula.num_clauses

# m < n * φ 时多项式可解
return m < n * self.phi and depth < self.critical_depth(n)

def polynomial_solve(self, formula: 'CNFFormula') -> Optional[Dict[str, bool]]:
"""多项式时间求解"""
# 利用no-11约束和自相似性
constraint_graph = self.build_constraint_graph(formula)

if self.is_tree_like(constraint_graph):
return self.tree_solve(constraint_graph)
else:
return self.phi_propagation(formula)

def phi_propagation(self, formula: 'CNFFormula') -> Optional[Dict[str, bool]]:
"""φ-传播算法"""
assignment = {}
unit_clauses = formula.get_unit_clauses()

while unit_clauses:
# 单元传播
for lit in unit_clauses:
var = abs(lit)
value = lit > 0
assignment[var] = value

# φ-推理规则
formula = self.phi_simplify(formula, assignment)
unit_clauses = formula.get_unit_clauses()

if formula.is_satisfied():
return assignment
elif formula.has_empty_clause():
return None
else:
# 递归分解
return self.phi_branch(formula, assignment)

4.2 图着色问题

class PhiGraphColoring:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def can_color_in_polynomial_time(self, graph: 'Graph', k: int) -> bool:
"""判断是否可在多项式时间内k-着色"""
return k >= self.phi ** 2 # k ≥ φ² ≈ 2.618

def phi_coloring(self, graph: 'Graph', k: int) -> Optional[Dict[int, int]]:
"""φ-着色算法"""
if not self.can_color_in_polynomial_time(graph, k):
return self.exponential_coloring(graph, k)

# 利用自相似性递归着色
if graph.num_vertices < 10:
return self.greedy_coloring(graph, k)

# φ-分解
components = self.phi_decompose_graph(graph)
colorings = []

for comp in components:
sub_coloring = self.phi_coloring(comp, k)
if sub_coloring is None:
return None
colorings.append(sub_coloring)

# 合并着色
return self.merge_colorings(colorings, graph)

def phi_decompose_graph(self, graph: 'Graph') -> List['Graph']:
"""按φ比例分解图"""
n = graph.num_vertices
split_size = int(n / self.phi)

# 找最小割
cut = self.find_balanced_cut(graph, split_size)
return self.split_by_cut(graph, cut)

4.3 TSP问题

class PhiTSP:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def is_polynomial_solvable(self, cities: List['City']) -> bool:
"""判断TSP实例是否多项式可解"""
fractal_dim = self.compute_fractal_dimension(cities)
return fractal_dim < np.log(self.phi)

def phi_tsp_solve(self, cities: List['City']) -> List[int]:
"""φ-TSP求解"""
if not self.is_polynomial_solvable(cities):
return self.branch_and_bound(cities)

# 利用分形结构
clusters = self.fractal_clustering(cities)

# 递归求解子问题
sub_tours = []
for cluster in clusters:
sub_tour = self.phi_tsp_solve(cluster)
sub_tours.append(sub_tour)

# 连接子回路
return self.connect_subtours(sub_tours)

def fractal_clustering(self, cities: List['City']) -> List[List['City']]:
"""分形聚类"""
# 按φ-比例递归划分空间
return self.recursive_phi_partition(cities)

5. 临界现象

5.1 临界深度计算

class CriticalDepth:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def compute_critical_depth(self, problem_size: int) -> 'PhiNumber':
"""计算临界深度 d_c = φ^√n"""
return PhiNumber(self.phi ** np.sqrt(problem_size))

def phase_transition_point(self, problem: 'Problem') -> float:
"""计算相变点"""
n = problem.size
d_c = self.compute_critical_depth(n)

# 在d_c附近复杂度发生突变
return d_c.value

def complexity_at_depth(self, problem: 'Problem', depth: int) -> str:
"""给定深度下的复杂度类"""
critical = self.compute_critical_depth(problem.size)

if depth < critical.value * 0.9:
return "P"
elif depth > critical.value * 1.1:
return "NP-complete"
else:
return "Phase transition region"

5.2 坍缩检测器

class CollapseDetector:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def detect_collapse(self, problem: 'Problem') -> bool:
"""检测问题是否会坍缩"""
# 检查三个条件
space_compressed = self.check_space_compression(problem)
decomposable = self.check_decomposability(problem)
self_similar = self.check_self_similarity(problem)

return space_compressed and decomposable and self_similar

def check_space_compression(self, problem: 'Problem') -> bool:
"""检查搜索空间压缩"""
original_space = problem.search_space_size()
phi_space = problem.phi_search_space_size()

ratio = phi_space / original_space
return ratio < 1 / problem.size # 多项式压缩

def check_decomposability(self, problem: 'Problem') -> bool:
"""检查递归可分解性"""
try:
decomposition = problem.phi_decompose()
return len(decomposition) <= self.phi ** problem.recursive_depth
except:
return False

def check_self_similarity(self, problem: 'Problem') -> bool:
"""检查自相似结构"""
sub_structures = problem.extract_substructures()

if len(sub_structures) < 2:
return False

# 比较子结构的相似性
reference = sub_structures[0]
for sub in sub_structures[1:]:
if not self.is_isomorphic(reference, sub):
return False

return True

6. 算法框架

6.1 自适应求解器

class AdaptiveSolver:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.solvers = {
'polynomial': PolynomialSolver(),
'exponential': ExponentialSolver(),
'hybrid': HybridSolver()
}

def solve(self, problem: 'Problem') -> 'Solution':
"""自适应求解"""
# 分析问题特征
depth = self.compute_depth(problem)
critical = self.critical_depth(problem.size)

# 选择求解策略
if depth < critical.value * 0.8:
solver = self.solvers['polynomial']
elif depth > critical.value * 1.2:
solver = self.solvers['exponential']
else:
solver = self.solvers['hybrid']

# 求解
return solver.solve(problem)

def compute_depth(self, problem: 'Problem') -> int:
"""计算问题的递归深度"""
entropy = problem.compute_entropy()
return int(np.log(entropy + 1) / np.log(self.phi))

def critical_depth(self, size: int) -> 'PhiNumber':
"""计算临界深度"""
return PhiNumber(self.phi ** np.sqrt(size))

6.2 φ-分解框架

class PhiDecompositionFramework:
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2

def decompose(self, problem: 'Problem', depth: int) -> List['Problem']:
"""φ-分解问题"""
if problem.size < self.threshold:
return [problem]

# 计算分解数
num_parts = min(int(self.phi ** depth), problem.size)

# 按黄金比例分割
parts = []
remaining = problem

for i in range(num_parts - 1):
size = int(remaining.size / self.phi)
part, remaining = remaining.split_at(size)
parts.append(part)

parts.append(remaining)
return parts

def solve_recursively(self, problem: 'Problem') -> 'Solution':
"""递归求解"""
depth = self.compute_depth(problem)

if self.is_base_case(problem):
return self.solve_directly(problem)

# 分解
subproblems = self.decompose(problem, depth)

# 递归求解
subsolutions = []
for sub in subproblems:
sol = self.solve_recursively(sub)
subsolutions.append(sol)

# 合并
return self.combine_by_similarity(subsolutions, problem)

7. 验证函数

7.1 坍缩验证

def verify_collapse(problem_class: type, size: int) -> bool:
"""验证特定规模的问题类是否坍缩"""
# 创建测试实例
instances = generate_test_instances(problem_class, size, count=100)

collapsed_count = 0
for instance in instances:
detector = CollapseDetector()
if detector.detect_collapse(instance):
# 验证多项式可解
solver = AdaptiveSolver()
start_time = time.time()
solution = solver.solve(instance)
solve_time = time.time() - start_time

# 检查是否真的是多项式时间
if solve_time < size ** 10: # 宽松的多项式界
collapsed_count += 1

# 如果大部分实例坍缩,则认为该类坍缩
return collapsed_count > len(instances) * 0.8

7.2 复杂度测量

def measure_complexity_transition(problem_class: type) -> Dict[int, str]:
"""测量复杂度相变"""
results = {}

for size in range(10, 100, 10):
problem = problem_class(size)
depth = RecursiveDepth().compute(problem)
critical = RecursiveDepth().critical_depth(size)

if depth < critical.value * 0.9:
results[size] = "P"
elif depth > critical.value * 1.1:
results[size] = "NP"
else:
results[size] = "Transition"

return results

8. 关键常数

# 基础常数
PHI = (1 + np.sqrt(5)) / 2 # 黄金分割率

# 压缩参数
COMPRESSION_FACTOR = 0.306 # no-11约束的压缩因子
FIBONACCI_LIMIT_RATIO = PHI ** (-1) # Fibonacci/2^n的极限比

# 临界参数
CRITICAL_EXPONENT = 0.5 # d_c = φ^(n^0.5)
PHASE_TRANSITION_WIDTH = 0.2 # 相变区域宽度

# 算法参数
DECOMPOSITION_THRESHOLD = 10 # 直接求解阈值
MAX_RECURSION_DEPTH = 100 # 最大递归深度

9. 错误处理

class CollapseError(Exception):
"""坍缩相关错误基类"""

class NoCollapseError(CollapseError):
"""问题不满足坍缩条件"""

class DepthExceededError(CollapseError):
"""超过临界深度"""

class DecompositionError(CollapseError):
"""分解失败"""

class VerificationError(CollapseError):
"""验证-搜索对称性破坏"""