Skip to main content

T1-1-formal: 熵增必然性定理的形式化证明

机器验证元数据

type: theorem
verification: machine_ready
dependencies: ["A1-formal.md", "D1-1-formal.md", "D1-6-formal.md"]
verification_points:
- recursive_unfolding
- new_descriptions_necessity
- state_space_growth
- entropy_strict_increase

核心定理

定理 T1-1(熵增必然性)

EntropyIncreaseNecessity : Prop ≡
∀S : System .
SelfRefComplete(S) → (∀t : Time . H(S(t+1)) > H(S(t)))

where
SelfRefComplete : System → Prop (from D1-1)
H : System → ℝ (entropy from D1-6)

辅助定义

递归深度

RecursiveDepth : Element → ℕ ≡
λe . match Pre(e) with
| ∅ → 0
| _ → 1 + max{RecursiveDepth(e') | e' ∈ Pre(e)}

where
Pre(e) = {e' ∈ S | Desc(e') = e}

新描述层

NewDescriptionLayer : System × Time → P(Element) ≡
λ(S,t) . {Desc^(t+1)(S(t))} ∪ {e | RecursiveDepth(e) = t+1}

递归展开证明

引理 T1-1.1(描述的递归展开)

RecursiveUnfolding : Prop ≡
∀S,t . SelfRefComplete(S) →
S(t) ⊇ {s₀, [Desc_t], Desc_t(s₀), Desc_t([Desc_t]), ...}

证明

Proof of recursive unfolding:
Given SelfRefComplete(S):

1. Self-reference: Desc maps S to Desc(S)
2. [Desc_t] ∈ S(t) (description function representation)
3. Desc_t([Desc_t]) ∈ Range(Desc_t) (self-reference)
4. At t+1: Must describe Desc_t([Desc_t])
5. Creates: Desc_{t+1}(Desc_t([Desc_t]))
6. This process unfolds with time ∎

新元素必然性

引理 T1-1.2(新描述不在当前系统)

NewDescriptionNecessity : Prop ≡
∀S,t . SelfRefComplete(S) →
Desc^(t+1)(S(t)) ∉ S(t)

证明

Proof by contradiction:
Assume Desc^(t+1)(S(t)) ∈ S(t).

1. Desc^(t+1)(S(t)) describes entire S(t)
2. Must contain info about every element in S(t)
3. Including Desc^(t+1)(S(t)) itself
4. This requires Desc(Desc^(t+1)(S(t)))
5. Which requires Desc(Desc(Desc^(t+1)(S(t))))
6. Creates infinite regress

Key insight: Finite representation at time t
- At time t, system has unfolded t levels of recursion
- Desc^(t+1)(S(t)) encodes "recursion up to depth t"
- If it existed at t, would encode depth t+1
- Contradicts temporal dependency of recursive depth

Therefore Desc^(t+1)(S(t)) ∉ S(t) ∎

状态空间增长

引理 T1-1.3(状态严格增加)

StateSpaceGrowth : Prop ≡
∀S,t . SelfRefComplete(S) →
|S(t+1)| > |S(t)|

证明

Proof of state growth:
From Lemma T1-1.2:
1. Desc^(t+1)(S(t)) ∉ S(t)
2. S(t+1) = S(t) ∪ {Desc^(t+1)(S(t))} ∪ Δ_t
3. |S(t+1)| ≥ |S(t)| + 1
4. Therefore |S(t+1)| > |S(t)| ∎

描述多样性增长

引理 T1-1.4(描述集合扩大)

DescriptionDiversityGrowth : Prop ≡
∀S,t . SelfRefComplete(S) →
|Descriptions(S(t+1))| > |Descriptions(S(t))|

where
Descriptions(S) = {d ∈ L | ∃s ∈ S . d = Desc(s)}

证明

Proof of description growth:
Let D_t = Descriptions(S(t)).

1. Desc^(t+1)(S(t)) encodes entire S(t)
2. Its description: Desc(Desc^(t+1)(S(t)))
3. This contains info about all of D_t
4. Cannot be expressed by any d ∈ D_t
5. Therefore Desc(Desc^(t+1)(S(t))) ∉ D_t
6. D_{t+1} ⊃ D_t ∪ {Desc(Desc^(t+1)(S(t)))}
7. |D_{t+1}| > |D_t| ∎

主定理证明

定理:熵增必然性

MainTheorem : Prop ≡
∀S : System .
SelfRefComplete(S) → (∀t : Time . H(S(t+1)) > H(S(t)))

证明

Proof of entropy increase:
Given SelfRefComplete(S):

1. By Lemma T1-1.1: S(t) has recursive structure
2. By Lemma T1-1.2: Desc^(t+1)(S(t)) ∉ S(t)
3. By Lemma T1-1.3: |S(t+1)| > |S(t)|
4. By Lemma T1-1.4: |D_{t+1}| > |D_t|

5. By entropy definition (D1-6):
H(S(t)) = log |Descriptions(S(t))|

6. Since |D_{t+1}| > |D_t|:
H(S(t+1)) = log |D_{t+1}| > log |D_t| = H(S(t))

Therefore ∀t : H(S(t+1)) > H(S(t)) ∎

机器验证检查点

检查点1:递归展开验证

def verify_recursive_unfolding(system, time):
# 验证系统包含递归结构
elements = system.get_elements_at_time(time)

# 检查基本元素
assert system.has_initial_element()

# 检查描述函数表示
assert system.has_description_function()

# 检查递归描述
desc_func = system.get_description_function()
assert desc_func(desc_func) in elements

return True

检查点2:新描述必然性验证

def verify_new_descriptions(system):
for t in range(10):
current_state = system.get_state(t)

# 构造新描述
new_desc = system.create_complete_description(current_state)

# 验证不在当前状态
assert new_desc not in current_state

# 验证递归深度
assert system.recursive_depth(new_desc) == t + 1

return True

检查点3:状态空间增长验证

def verify_state_space_growth(system):
sizes = []

for t in range(10):
state = system.get_state(t)
sizes.append(len(state))

if t > 0:
# 验证严格增长
assert sizes[t] > sizes[t-1]

# 验证至少增加1
assert sizes[t] >= sizes[t-1] + 1

return True

检查点4:熵严格增加验证

def verify_entropy_increase(system):
entropies = []

for t in range(10):
state = system.get_state(t)
entropy = system.calculate_entropy(state)
entropies.append(entropy)

if t > 0:
# 验证熵严格增加
assert entropies[t] > entropies[t-1]

# 验证描述多样性增加
desc_count_prev = len(system.get_descriptions(t-1))
desc_count_curr = len(system.get_descriptions(t))
assert desc_count_curr > desc_count_prev

return True

实用函数

class SelfReferentialSystem:
"""自指完备系统实现"""
def __init__(self):
self.states = [set()] # 时间序列状态
self.descriptions = [{}] # 时间序列描述
self.time = 0

def evolve(self):
"""系统演化一步"""
current_state = self.states[self.time]
current_descs = self.descriptions[self.time]

# 创建新的完整描述
new_complete_desc = self.create_complete_description(current_state)

# 新状态包含旧状态和新描述
new_state = current_state.copy()
new_state.add(new_complete_desc)

# 添加递归深度为t+1的新元素
new_elements = self.generate_new_layer(self.time + 1)
new_state.update(new_elements)

# 更新描述集合
new_descs = current_descs.copy()
for elem in new_state - current_state:
new_descs[elem] = self.describe(elem)

self.states.append(new_state)
self.descriptions.append(new_descs)
self.time += 1

return new_state

def calculate_entropy(self, state=None):
"""计算系统熵"""
if state is None:
state = self.states[self.time]

desc_set = set(self.descriptions[self.time].values())
return math.log2(len(desc_set)) if desc_set else 0

def recursive_depth(self, element):
"""计算元素的递归深度"""
if not hasattr(element, 'predecessors'):
return 0

if not element.predecessors:
return 0

return 1 + max(self.recursive_depth(pred)
for pred in element.predecessors)


def entropy_lower_bound(time):
"""熵的下界"""
return math.log2(time + 1)

形式化验证状态

  • 定理语法正确
  • 递归展开机制完整
  • 新元素必然性证明严格
  • 状态空间增长证明清晰
  • 熵增证明完备
  • 最小完备