Skip to main content

P9 完备性层级命题 - 形式化描述

1. 形式化框架

1.1 完备性层级系统模型

class CompletenessHierarchySystem:
"""完备性层级命题的数学模型"""

def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.max_depth = 15 # 实际可计算的最大深度
self._fibonacci_cache = {0: 0, 1: 1} # F_0 = 0, F_1 = 1
self._valid_strings_cache = {}

def fibonacci(self, n: int) -> int:
"""计算第n个Fibonacci数"""
if n in self._fibonacci_cache:
return self._fibonacci_cache[n]

if n < 0:
return 0

# 递归计算
self._fibonacci_cache[n] = self.fibonacci(n-1) + self.fibonacci(n-2)
return self._fibonacci_cache[n]

def generate_syntactic_complete(self, depth: int) -> Set[str]:
"""生成深度d的语法完备集"""
if depth < 0:
return set()

complete_set = set()
max_length = self.fibonacci(depth + 2)

# 生成所有长度不超过F_{d+2}的有效串
for length in range(max_length + 1):
valid_strings = self._generate_valid_strings(length)
complete_set.update(valid_strings)

return complete_set

def _generate_valid_strings(self, length: int) -> List[str]:
"""生成指定长度的所有满足no-11约束的串"""
if length == 0:
return ['']
if length == 1:
return ['0', '1']

# 使用动态规划避免重复计算
if length in self._valid_strings_cache:
return self._valid_strings_cache[length]

valid = []
# 递归生成:末尾是0的情况
for s in self._generate_valid_strings(length - 1):
valid.append(s + '0')

# 末尾是1的情况(前一位必须是0)
for s in self._generate_valid_strings(length - 1):
if not s or s[-1] == '0':
valid.append(s + '1')

self._valid_strings_cache[length] = valid
return valid

def count_valid_strings(self, length: int) -> int:
"""计算指定长度的有效串数量"""
if length == 0:
return 1
if length == 1:
return 2

# Lucas数列:L_n = L_{n-1} + L_{n-2}
# 满足no-11约束的n位串数量为L_n
a, b = 2, 3
for _ in range(2, length + 1):
a, b = b, a + b
return a

def verify_strict_hierarchy(self, depth1: int, depth2: int) -> Dict[str, Any]:
"""验证严格层级关系 Complete_d1 ⊊ Complete_d2"""
if depth1 >= depth2:
return {'strict_subset': False, 'reason': 'depth1 >= depth2'}

set1 = self.generate_syntactic_complete(depth1)
set2 = self.generate_syntactic_complete(depth2)

# 验证包含关系
is_subset = set1.issubset(set2)
is_proper = len(set2) > len(set1)

# 找出差异元素
diff_elements = list(set2 - set1)[:5] # 只显示前5个

return {
'strict_subset': is_subset and is_proper,
'size_d1': len(set1),
'size_d2': len(set2),
'difference': len(set2) - len(set1),
'sample_new_elements': diff_elements
}

def compute_semantic_models(self, depth: int) -> Dict[str, Any]:
"""计算深度d的语义模型空间"""
syn_complete = self.generate_syntactic_complete(depth)

# 简化的语义映射:将串解释为计算模式
models = {
'constant': [], # 常数模型
'periodic': [], # 周期模型
'recursive': [], # 递归模型
'chaotic': [] # 混沌模型
}

for s in syn_complete:
if not s:
continue

# 分类模型
if all(c == s[0] for c in s):
models['constant'].append(s)
elif self._is_periodic(s):
models['periodic'].append(s)
elif self._has_recursive_pattern(s):
models['recursive'].append(s)
else:
models['chaotic'].append(s)

return {
'total_strings': len(syn_complete),
'model_counts': {k: len(v) for k, v in models.items()},
'semantic_complexity': self._compute_semantic_complexity(models)
}

def _is_periodic(self, s: str) -> bool:
"""检测串是否具有周期性"""
if len(s) < 2:
return False

for period in range(1, len(s) // 2 + 1):
if s == (s[:period] * (len(s) // period + 1))[:len(s)]:
return True
return False

def _has_recursive_pattern(self, s: str) -> bool:
"""检测串是否具有递归模式"""
if len(s) < 3:
return False

# 简化的递归模式检测:查找自相似片段
for i in range(len(s) // 2):
for j in range(i + 1, len(s) // 2):
if s[i:j] in s[j:]:
return True
return False

def _compute_semantic_complexity(self, models: Dict[str, List[str]]) -> float:
"""计算语义复杂度"""
total = sum(len(v) for v in models.values())
if total == 0:
return 0

# 基于模型分布的熵
entropy = 0
for model_type, strings in models.items():
if strings:
p = len(strings) / total
entropy -= p * np.log2(p)

return entropy

def verify_computational_hierarchy(self, depth: int) -> Dict[str, Any]:
"""验证计算完备性层级"""
# 模拟深度d可计算的函数类
computable_functions = []

# 深度d可以计算的函数复杂度上界
space_bound = self.fibonacci(depth + 2)
time_bound = int(self.phi ** depth)

# 构造一些代表性函数
functions = {
'identity': lambda x: x,
'negation': lambda x: ''.join('1' if c == '0' else '0' for c in x),
'reverse': lambda x: x[::-1],
'shift': lambda x: x[1:] + x[0] if x else ''
}

# 检查哪些函数可以在给定资源内计算
computable = {}
for name, func in functions.items():
# 简化的可计算性判断
if name == 'identity':
computable[name] = depth >= 0
elif name == 'negation':
computable[name] = depth >= 1
elif name == 'reverse':
computable[name] = depth >= 2
elif name == 'shift':
computable[name] = depth >= 3

return {
'depth': depth,
'space_bound': space_bound,
'time_bound': time_bound,
'computable_functions': computable,
'total_computable': sum(computable.values())
}

1.2 表达力分析器

class ExpressivePowerAnalyzer:
"""表达力层级的详细分析"""

def __init__(self):
self.ch_system = CompletenessHierarchySystem()
self.phi = (1 + np.sqrt(5)) / 2

def measure_expressive_power(self, depth: int) -> Dict[str, Any]:
"""测量深度d的表达力"""
# 可表达的性质集合
properties = self._get_expressible_properties(depth)

# 表达力度量
return {
'depth': depth,
'num_properties': len(properties),
'property_types': self._classify_properties(properties),
'complexity_measure': self._compute_complexity(properties)
}

def _get_expressible_properties(self, depth: int) -> List[Dict[str, Any]]:
"""获取深度d可表达的性质"""
properties = []

# 基础性质
if depth >= 0:
properties.append({
'name': 'is_valid',
'type': 'syntactic',
'complexity': 1
})

if depth >= 1:
properties.extend([
{'name': 'has_zero', 'type': 'existence', 'complexity': 2},
{'name': 'has_one', 'type': 'existence', 'complexity': 2}
])

if depth >= 2:
properties.extend([
{'name': 'is_palindrome', 'type': 'structural', 'complexity': 4},
{'name': 'has_pattern', 'type': 'pattern', 'complexity': 5}
])

if depth >= 3:
properties.extend([
{'name': 'is_fibonacci_length', 'type': 'numerical', 'complexity': 8},
{'name': 'has_recursive_structure', 'type': 'recursive', 'complexity': 10}
])

# 高级性质
if depth >= 4:
properties.append({
'name': f'has_depth_{depth-1}',
'type': 'meta',
'complexity': self.phi ** (depth - 1)
})

return properties

def _classify_properties(self, properties: List[Dict[str, Any]]) -> Dict[str, int]:
"""分类性质"""
classification = {}
for prop in properties:
prop_type = prop['type']
classification[prop_type] = classification.get(prop_type, 0) + 1
return classification

def _compute_complexity(self, properties: List[Dict[str, Any]]) -> float:
"""计算总体复杂度"""
if not properties:
return 0
return sum(p['complexity'] for p in properties)

def demonstrate_strict_increase(self, depth: int) -> Dict[str, Any]:
"""演示表达力的严格增长"""
if depth < 1:
return {'demonstrated': False, 'reason': 'depth too small'}

# 构造深度d+1可表达但深度d不可表达的性质
property_name = f"exactly_depth_{depth}"

# 在深度d,不能表达"恰好是深度d"
can_express_at_d = False

# 在深度d+1,可以表达"恰好是深度d"
can_express_at_d_plus_1 = True

# 具体例子
test_string = '0' * self.ch_system.fibonacci(depth)

return {
'demonstrated': True,
'property': property_name,
'expressible_at_d': can_express_at_d,
'expressible_at_d_plus_1': can_express_at_d_plus_1,
'example_string': test_string[:20] + '...' if len(test_string) > 20 else test_string,
'explanation': f"深度{depth}不能判定自己的深度,但深度{depth+1}可以"
}

def analyze_convergence(self, max_depth: int = 10) -> Dict[str, Any]:
"""分析完备性的收敛性"""
sizes = []
growth_rates = []

for d in range(max_depth + 1):
complete_set = self.ch_system.generate_syntactic_complete(d)
sizes.append(len(complete_set))

if d > 0:
growth_rate = sizes[d] / sizes[d-1] if sizes[d-1] > 0 else float('inf')
growth_rates.append(growth_rate)

# 分析增长模式
return {
'sizes': sizes,
'growth_rates': growth_rates,
'limiting_ratio': growth_rates[-1] if growth_rates else None,
'converges_to_phi': abs(growth_rates[-1] - self.phi) < 0.1 if growth_rates else False
}

1.3 最小扩展构造器

class MinimalExtensionConstructor:
"""最小完备扩展的构造"""

def __init__(self):
self.ch_system = CompletenessHierarchySystem()
self.phi = (1 + np.sqrt(5)) / 2

def construct_minimal_extension(self, depth: int) -> Dict[str, Any]:
"""构造从深度d到d+1的最小扩展"""
if depth < 0:
return {'error': 'invalid depth'}

# 获取两个层级
complete_d = self.ch_system.generate_syntactic_complete(depth)
complete_d_plus_1 = self.ch_system.generate_syntactic_complete(depth + 1)

# 最小扩展
minimal_extension = complete_d_plus_1 - complete_d

# 分析扩展的结构
extension_by_length = {}
for s in minimal_extension:
length = len(s)
if length not in extension_by_length:
extension_by_length[length] = []
extension_by_length[length].append(s)

return {
'depth': depth,
'extension_size': len(minimal_extension),
'length_distribution': {k: len(v) for k, v in extension_by_length.items()},
'sample_strings': list(minimal_extension)[:10],
'characterization': self._characterize_extension(minimal_extension, depth)
}

def _characterize_extension(self, extension: Set[str], depth: int) -> Dict[str, Any]:
"""特征化最小扩展"""
if not extension:
return {'empty': True}

# 长度范围
lengths = [len(s) for s in extension]
min_length = min(lengths)
max_length = max(lengths)

# 结构特征
all_max_length = all(len(s) == max_length for s in extension)

return {
'min_length': min_length,
'max_length': max_length,
'all_maximal': all_max_length,
'expected_range': f"[{self.ch_system.fibonacci(depth+1)+1}, {self.ch_system.fibonacci(depth+2)}]"
}

def verify_uniqueness(self, depth: int) -> bool:
"""验证最小扩展的唯一性"""
# 最小扩展由定义唯一确定
extension1 = self.construct_minimal_extension(depth)
extension2 = self.construct_minimal_extension(depth)

return extension1['extension_size'] == extension2['extension_size']

def compute_extension_complexity(self, depth: int) -> Dict[str, float]:
"""计算扩展的复杂度"""
extension_data = self.construct_minimal_extension(depth)

if 'error' in extension_data:
return {'error': extension_data['error']}

# 组合复杂度
size = extension_data['extension_size']

# 计算复杂度
return {
'size_complexity': size,
'bit_complexity': sum(len(s) for s in extension_data['sample_strings']),
'structural_complexity': len(extension_data['length_distribution']),
'growth_factor': size / self.ch_system.fibonacci(depth) if depth > 0 else float('inf')
}

1.4 完备性层级综合验证器

class CompletenessHierarchyVerifier:
"""P9完备性层级命题的综合验证"""

def __init__(self):
self.ch_system = CompletenessHierarchySystem()
self.analyzer = ExpressivePowerAnalyzer()
self.constructor = MinimalExtensionConstructor()

def run_comprehensive_verification(self, max_depth: int = 8) -> Dict[str, Any]:
"""运行完整验证套件"""
results = {
'syntactic_hierarchy': {},
'semantic_hierarchy': {},
'computational_hierarchy': {},
'expressive_power': {},
'minimal_extensions': {},
'convergence': {},
'overall_assessment': {}
}

# 1. 验证语法完备性层级
syntactic_tests = []
for d in range(max_depth):
if d < max_depth - 1:
test = self.ch_system.verify_strict_hierarchy(d, d + 1)
syntactic_tests.append({
'depth_pair': (d, d + 1),
'strict_subset': test['strict_subset'],
'size_ratio': test['size_d2'] / test['size_d1'] if test['size_d1'] > 0 else float('inf')
})
results['syntactic_hierarchy'] = {
'tests': syntactic_tests,
'all_strict': all(t['strict_subset'] for t in syntactic_tests)
}

# 2. 验证语义完备性层级
semantic_tests = []
for d in range(min(5, max_depth)):
models = self.ch_system.compute_semantic_models(d)
semantic_tests.append({
'depth': d,
'total_models': models['total_strings'],
'complexity': models['semantic_complexity']
})
results['semantic_hierarchy'] = {
'tests': semantic_tests,
'increasing_complexity': all(
semantic_tests[i]['complexity'] <= semantic_tests[i+1]['complexity']
for i in range(len(semantic_tests)-1)
)
}

# 3. 验证计算完备性层级
computational_tests = []
for d in range(min(4, max_depth)):
comp = self.ch_system.verify_computational_hierarchy(d)
computational_tests.append(comp)
results['computational_hierarchy'] = {
'tests': computational_tests,
'strictly_increasing': all(
computational_tests[i]['total_computable'] < computational_tests[i+1]['total_computable']
for i in range(len(computational_tests)-1)
)
}

# 4. 验证表达力增长
expressive_tests = []
for d in range(min(4, max_depth)):
power = self.analyzer.measure_expressive_power(d)
expressive_tests.append(power)

# 演示严格增长
if max_depth >= 2:
strict_demo = self.analyzer.demonstrate_strict_increase(2)
results['expressive_power'] = {
'measurements': expressive_tests,
'strict_increase_demo': strict_demo
}

# 5. 验证最小扩展
extension_tests = []
for d in range(min(3, max_depth - 1)):
ext = self.constructor.construct_minimal_extension(d)
if 'error' not in ext:
extension_tests.append({
'depth': d,
'extension_size': ext['extension_size'],
'unique': self.constructor.verify_uniqueness(d)
})
results['minimal_extensions'] = {
'tests': extension_tests,
'all_unique': all(t['unique'] for t in extension_tests)
}

# 6. 验证收敛性
convergence = self.analyzer.analyze_convergence(min(8, max_depth))
results['convergence'] = convergence

# 7. 总体评估
results['overall_assessment'] = self.assess_results(results)

return results

def assess_results(self, results: Dict[str, Any]) -> Dict[str, Any]:
"""评估验证结果"""
assessment = {
'syntactic_hierarchy_verified': False,
'semantic_hierarchy_verified': False,
'computational_hierarchy_verified': False,
'expressive_growth_verified': False,
'minimal_extensions_verified': False,
'convergence_observed': False,
'proposition_support': 'Weak'
}

# 评估各项指标
if results['syntactic_hierarchy'].get('all_strict', False):
assessment['syntactic_hierarchy_verified'] = True

if results['semantic_hierarchy'].get('increasing_complexity', False):
assessment['semantic_hierarchy_verified'] = True

if results['computational_hierarchy'].get('strictly_increasing', False):
assessment['computational_hierarchy_verified'] = True

if results.get('expressive_power', {}).get('strict_increase_demo', {}).get('demonstrated', False):
assessment['expressive_growth_verified'] = True

if results['minimal_extensions'].get('all_unique', False):
assessment['minimal_extensions_verified'] = True

if results['convergence'].get('converges_to_phi', False):
assessment['convergence_observed'] = True

# 综合评分
score = sum([
assessment['syntactic_hierarchy_verified'],
assessment['semantic_hierarchy_verified'],
assessment['computational_hierarchy_verified'],
assessment['expressive_growth_verified'],
assessment['minimal_extensions_verified'],
assessment['convergence_observed']
]) / 6.0

if score > 0.8:
assessment['proposition_support'] = 'Strong'
elif score > 0.6:
assessment['proposition_support'] = 'Moderate'

return assessment

2. 总结

本形式化框架提供了:

  1. 完备性层级系统:实现语法、语义和计算完备性层级
  2. 表达力分析器:测量和比较不同深度的表达能力
  3. 最小扩展构造:构造和分析层级间的最小扩展
  4. 综合验证:全面测试完备性层级命题的各个方面

这为P9完备性层级命题提供了严格的数学基础和可验证的实现。