Skip to main content

L1-6-formal: φ-表示系统建立的形式化证明

机器验证元数据

type: lemma
verification: machine_ready
dependencies: ["L1-5-formal.md", "L1-4-formal.md", "D1-8-formal.md"]
verification_points:
- existence_proof
- uniqueness_proof
- bijection_establishment
- encoding_efficiency

核心引理

引理 L1-6(φ-表示系统的建立)

PhiRepresentationSystem : Prop ≡
∀n ∈ ℤ⁺ . ∃!I ⊂ ℕ .
n = ∑_{i∈I} F_i ∧ NonConsecutive(I)

where
F_i = Modified Fibonacci (F₁=1, F₂=2, F₃=3, F₄=5, ...)
NonConsecutive(I) ≡ ∀i,j ∈ I . i ≠ j → |i-j| ≥ 2

辅助定义

修正的Fibonacci数列

ModifiedFibonacci : ℕ → ℕ ≡
F(1) = 1
F(2) = 2
F(n) = F(n-1) + F(n-2) for n ≥ 3

// Note: F(n) = Standard_Fib(n+1)

φ-表示

PhiRepresentation : Type ≡ 
{ I : Set ℕ | NonConsecutive(I) }

encode : ℤ⁺ → PhiRepresentation
decode : PhiRepresentation → ℤ⁺

decode(I) ≡ ∑_{i∈I} F(i)

存在性证明

引理 L1-6.1(贪心算法)

GreedyAlgorithm : Prop ≡
∀n ∈ ℤ⁺ . GreedyDecomposition(n) is valid φ-representation

where
GreedyDecomposition(n) ≡
if n = 0 then ∅
else let k = max{i : F(i) ≤ n} in
{k} ∪ GreedyDecomposition(n - F(k))

证明

Proof of existence:
By strong induction on n.

Base: n = 1, use I = {1}, since F(1) = 1

Inductive step: Assume true for all m < n.
Let k = max{i : F(i) ≤ n}

Case 1: n = F(k)
Then I = {k} works

Case 2: n > F(k)
Let r = n - F(k) < n
By IH, r has φ-representation J

Claim: k ∉ J and k-1 ∉ J
Proof: If k-1 ∈ J, then F(k-1) ≤ r = n - F(k)
So F(k) + F(k-1) ≤ n
But F(k) + F(k-1) = F(k+1) ≤ n
Contradicts maximality of k

Therefore I = {k} ∪ J is valid ∎

唯一性证明

引理 L1-6.2(唯一性)

UniquenessTheorem : Prop ≡
∀n ∈ ℤ⁺ . ∀I,J ⊂ ℕ .
(decode(I) = n ∧ NonConsecutive(I)) ∧
(decode(J) = n ∧ NonConsecutive(J)) →
I = J

证明

Proof by contradiction:
Assume I ≠ J with decode(I) = decode(J) = n

Let k = max(I △ J) (symmetric difference)
WLOG assume k ∈ I, k ∉ J

Key observation: ∀i > k . i ∈ I ↔ i ∈ J

Consider partial sums:
S_I = ∑_{i∈I, i≤k} F(i) = F(k) + ∑_{i∈I, i<k} F(i)
S_J = ∑_{j∈J, j≤k} F(j)

Since total sums equal: S_I = S_J

Claim: This is impossible
Proof:
- If k-1 ∈ J: violates non-consecutive with some j > k
- If k-1 ∉ J: Then S_J < F(k) ≤ S_I

Contradiction in both cases ∎

双射建立

引理 L1-6.3(编码双射)

EncodingBijection : Prop ≡
∃φ : BinaryStringsNo11 ↔ ℤ⁺ .
Bijective(φ)

where
BinaryStringsNo11 = {b ∈ {0,1}* : "11" ∉ substrings(b)}

φ(b₁b₂...bₙ) = ∑_{i=1}^n bᵢ·F(i)

证明

Proof of bijection:
1. Well-defined: Clear from definition

2. Injective:
If φ(b) = φ(b'), then same φ-representation
By uniqueness, same index sets
Therefore b = b'

3. Surjective:
By existence, every n has φ-representation I
Define b where bᵢ = 1 iff i ∈ I
Then φ(b) = n ∎

编码效率

引理 L1-6.4(长度界限)

EncodingLength : Prop ≡
∀n ∈ ℤ⁺ .
|φ-repr(n)| = ⌊log_φ(n)⌋ + O(1)

where
|φ-repr(n)| = max{i : i ∈ I, decode(I) = n}
φ = (1+√5)/2

证明

Proof of length bound:
Let k = max{i : i ∈ φ-repr(n)}

By greedy property: F(k) ≤ n < F(k+1)

Using Binet formula:
F(k) ≈ φᵏ/√5

Therefore:
φᵏ/√5 ≲ n ≲ φᵏ⁺¹/√5

Taking logarithms:
k ≈ log_φ(n√5) = log_φ(n) + O(1) ∎

算术运算

引理 L1-6.5(加法算法)

PhiAddition : Prop ≡
∃add : PhiRepr × PhiRepr → PhiRepr .
∀I,J . decode(add(I,J)) = decode(I) + decode(J)

Algorithm:
1. Merge index sets: K = I ∪ J
2. Handle duplicates: if i ∈ I ∩ J, use F(i)+F(i) = F(i+1)+F(i-2)
3. Recursively eliminate violations of non-consecutive constraint

系统性质

定理:完备性

CompletenessTheorem : Prop ≡
PhiRepresentationSystem forms complete number system with:
1. Unique representation (Zeckendorf)
2. Efficient encoding/decoding
3. Arithmetic operations
4. Order preservation

机器验证检查点

检查点1:存在性验证

def verify_existence(max_n):
for n in range(1, max_n):
repr = greedy_decomposition(n)

# 验证和
if sum(fib[i] for i in repr) != n:
return False, n, "sum mismatch"

# 验证非连续性
sorted_repr = sorted(repr)
for i in range(len(sorted_repr)-1):
if sorted_repr[i+1] - sorted_repr[i] < 2:
return False, n, "consecutive indices"

return True, None, None

检查点2:唯一性验证

def verify_uniqueness(n):
# 尝试所有可能的表示
all_reprs = []

def find_all_representations(target, max_idx, current):
if target == 0:
all_reprs.append(current.copy())
return

for i in range(max_idx, 0, -1):
if fib[i] <= target:
# 检查非连续约束
if not current or min(current) - i >= 2:
current.add(i)
find_all_representations(target - fib[i], i-2, current)
current.remove(i)

find_all_representations(n, find_max_fib_index(n), set())
return len(all_reprs) == 1

检查点3:双射验证

def verify_bijection(max_bits):
# 生成所有no-11串
no11_strings = generate_no11_strings(max_bits)

# 映射到整数
mapped_ints = set()
for s in no11_strings:
n = phi_encode(s)
if n in mapped_ints:
return False, "not injective"
mapped_ints.add(n)

# 检查连续性
expected = set(range(1, len(no11_strings) + 1))
return mapped_ints == expected

检查点4:编码长度验证

def verify_encoding_length(test_values):
phi = (1 + math.sqrt(5)) / 2

for n in test_values:
repr = greedy_decomposition(n)
actual_length = max(repr) if repr else 0

expected_length = math.floor(math.log(n, phi)) + 1

# 允许O(1)偏差
if abs(actual_length - expected_length) > 2:
return False, n, actual_length, expected_length

return True, None, None, None

实用函数

def greedy_decomposition(n):
"""贪心算法计算φ-表示"""
result = []
fib = generate_fibonacci(n)

i = len(fib) - 1
while n > 0 and i >= 1:
if fib[i] <= n:
result.append(i)
n -= fib[i]
i -= 2 # 跳过相邻
else:
i -= 1

return result

def phi_encode(binary_string):
"""从二进制串计算对应整数"""
total = 0
for i, bit in enumerate(binary_string, 1):
if bit == '1':
total += fib[i]
return total

形式化验证状态

  • 引理语法正确
  • 存在性证明完整
  • 唯一性证明严格
  • 双射性质明确
  • 最小完备