Skip to main content

C5-2 形式化规范:φ-编码的熵优势推论

推论陈述

推论5.2 (φ-编码的熵优势): φ-编码在约束条件下实现最大熵密度。

形式化定义

1. 熵密度定义

def entropy_density(entropy: float, average_length: float) -> float:
"""
计算熵密度
η = H / L
其中 H 是熵,L 是平均编码长度
"""
if average_length <= 0:
return 0.0
return entropy / average_length

2. φ-编码的熵密度

class PhiEncodingEntropyDensity:
"""φ-编码的熵密度计算器"""

def __init__(self):
self.phi = (1 + math.sqrt(5)) / 2
self.log2_phi = math.log2(self.phi) # ≈ 0.694

def compute_phi_entropy_density(self) -> float:
"""
计算φ-编码的熵密度

根据理论:
H_φ / L_φ = log₂(φ)
"""
return self.log2_phi

def compute_maximum_entropy(self, n_bits: int) -> float:
"""
计算在no-11约束下的最大熵

对于n位系统,有效状态数 = F_{n+2} (Fibonacci数)
最大熵 = log₂(F_{n+2})
"""
# 计算Fibonacci数
fib_count = self._fibonacci_count(n_bits)

if fib_count <= 0:
return 0.0

return math.log2(fib_count)

def compute_average_phi_length(self, n_bits: int) -> float:
"""
计算φ-编码的平均长度

基于定理T5-4,φ-编码实现最优压缩
平均长度 = H_max / log₂(φ)
"""
max_entropy = self.compute_maximum_entropy(n_bits)
return max_entropy / self.log2_phi

def _fibonacci_count(self, n: int) -> int:
"""计算满足no-11约束的n位序列数量(Fibonacci数)"""
if n <= 0:
return 1
elif n == 1:
return 2 # "0", "1"
elif n == 2:
return 3 # "00", "01", "10"

# F(n) = F(n-1) + F(n-2)
fib_prev_prev = 2
fib_prev = 3

for i in range(3, n + 1):
fib_current = fib_prev + fib_prev_prev
fib_prev_prev = fib_prev
fib_prev = fib_current

return fib_prev

3. 比较编码器

class EncodingComparator:
"""不同编码方案的熵密度比较器"""

def __init__(self):
self.phi = (1 + math.sqrt(5)) / 2
self.log2_phi = math.log2(self.phi)

def binary_entropy_density(self, n_bits: int) -> float:
"""
标准二进制编码的熵密度
无约束时:H = n, L = n, η = 1
"""
return 1.0

def constrained_binary_entropy_density(self, n_bits: int) -> float:
"""
有no-11约束的二进制编码熵密度
H = log₂(F_{n+2}), L = n, η = log₂(F_{n+2}) / n
"""
fib_count = self._fibonacci_count(n_bits)
if fib_count <= 0 or n_bits <= 0:
return 0.0

entropy = math.log2(fib_count)
return entropy / n_bits

def huffman_entropy_density(self, probabilities: List[float]) -> float:
"""
Huffman编码的熵密度
理论上接近Shannon极限:η ≈ H / H = 1
但受概率分布影响
"""
if not probabilities or sum(probabilities) <= 0:
return 0.0

# Shannon熵
shannon_entropy = -sum(p * math.log2(p) for p in probabilities if p > 0)

# Huffman编码的期望长度(近似)
# 在最坏情况下可能稍大于Shannon熵
expected_length = shannon_entropy * 1.1 # 10%开销估计

return shannon_entropy / expected_length

def arithmetic_entropy_density(self, probabilities: List[float]) -> float:
"""
算术编码的熵密度
理论上可以达到Shannon极限:η = H / H = 1
"""
if not probabilities or sum(probabilities) <= 0:
return 0.0

shannon_entropy = -sum(p * math.log2(p) for p in probabilities if p > 0)
return 1.0 # 理论最优

def _fibonacci_count(self, n: int) -> int:
"""计算Fibonacci数"""
if n <= 0:
return 1
elif n == 1:
return 2
elif n == 2:
return 3

fib_prev_prev = 2
fib_prev = 3

for i in range(3, n + 1):
fib_current = fib_prev + fib_prev_prev
fib_prev_prev = fib_prev
fib_prev = fib_current

return fib_prev

def compare_all_encodings(self, n_bits: int) -> Dict[str, float]:
"""比较所有编码方案的熵密度"""
# 生成均匀分布概率(最大熵情况)
uniform_probs = [1.0 / (2**n_bits)] * (2**n_bits)

return {
'phi_encoding': self.log2_phi,
'binary_unconstrained': self.binary_entropy_density(n_bits),
'binary_constrained': self.constrained_binary_entropy_density(n_bits),
'huffman': self.huffman_entropy_density(uniform_probs),
'arithmetic': self.arithmetic_entropy_density(uniform_probs)
}

4. 熵优势验证器

class EntropyAdvantageVerifier:
"""φ-编码熵优势验证器"""

def __init__(self):
self.phi = (1 + math.sqrt(5)) / 2
self.log2_phi = math.log2(self.phi)
self.phi_entropy_computer = PhiEncodingEntropyDensity()
self.comparator = EncodingComparator()

def verify_phi_optimality(self, n_bits: int) -> Dict[str, Any]:
"""
验证φ-编码的最优性

验证 H_φ/L_φ = log₂(φ) > H_any/L_any
"""
# φ-编码的熵密度
phi_density = self.phi_entropy_computer.compute_phi_entropy_density()

# 其他编码的熵密度
other_densities = self.comparator.compare_all_encodings(n_bits)

# 验证优势
advantages = {}
for encoding, density in other_densities.items():
if encoding != 'phi_encoding':
if density > 0:
advantages[encoding] = phi_density / density
else:
advantages[encoding] = float('inf')

# 找到最强的竞争对手
max_competitor_density = max(
density for encoding, density in other_densities.items()
if encoding != 'phi_encoding'
)

return {
'phi_entropy_density': phi_density,
'competitor_densities': other_densities,
'advantages': advantages,
'max_competitor_density': max_competitor_density,
'phi_advantage': phi_density / max_competitor_density if max_competitor_density > 0 else float('inf'),
'is_optimal': phi_density > max_competitor_density
}

def theoretical_bound_verification(self, n_bits: int) -> Dict[str, Any]:
"""
验证理论边界

验证 log₂(φ) 是在no-11约束下的理论上界
"""
# 计算约束下的最大可能熵密度
max_entropy = self.phi_entropy_computer.compute_maximum_entropy(n_bits)
min_possible_length = max_entropy / self.log2_phi # φ-编码达到的长度

# 理论上界
theoretical_upper_bound = self.log2_phi

# 验证任何编码都不能超过这个上界
all_densities = self.comparator.compare_all_encodings(n_bits)
max_observed_density = max(all_densities.values())

return {
'theoretical_upper_bound': theoretical_upper_bound,
'max_observed_density': max_observed_density,
'phi_achieves_bound': abs(all_densities['phi_encoding'] - theoretical_upper_bound) < 1e-10,
'no_encoding_exceeds_bound': max_observed_density <= theoretical_upper_bound + 1e-10,
'bound_violation': max_observed_density > theoretical_upper_bound + 1e-10
}

5. 实际应用模拟器

class EntropyAdvantageApplications:
"""熵优势的实际应用模拟"""

def __init__(self):
self.phi = (1 + math.sqrt(5)) / 2
self.log2_phi = math.log2(self.phi)

def data_compression_simulation(self, data_sizes: List[int]) -> Dict[str, Any]:
"""
数据压缩应用模拟
"""
results = {}

for size in data_sizes:
# 原始数据大小
original_bits = size * 8 # 假设字节数据

# 不同压缩方案的效果
# φ-编码
phi_compressed = original_bits / self.log2_phi # 更高的熵密度
phi_ratio = original_bits / phi_compressed

# 标准压缩(如gzip)
standard_compressed = original_bits * 0.7 # 典型30%压缩率
standard_ratio = original_bits / standard_compressed

# Huffman编码
huffman_compressed = original_bits * 0.8 # 典型20%压缩率
huffman_ratio = original_bits / huffman_compressed

results[f'{size}_bytes'] = {
'original_bits': original_bits,
'phi_compressed': phi_compressed,
'phi_ratio': phi_ratio,
'standard_compressed': standard_compressed,
'standard_ratio': standard_ratio,
'huffman_compressed': huffman_compressed,
'huffman_ratio': huffman_ratio,
'phi_advantage_over_standard': phi_ratio / standard_ratio,
'phi_advantage_over_huffman': phi_ratio / huffman_ratio
}

return results

def storage_optimization_simulation(self) -> Dict[str, Any]:
"""
存储优化应用模拟
"""
# 典型存储场景
scenarios = {
'database_records': {'record_size_bits': 1024, 'num_records': 1000000},
'log_files': {'record_size_bits': 512, 'num_records': 10000000},
'scientific_data': {'record_size_bits': 2048, 'num_records': 500000}
}

results = {}

for scenario, params in scenarios.items():
record_bits = params['record_size_bits']
num_records = params['num_records']
total_bits = record_bits * num_records

# φ-编码存储需求
phi_storage = total_bits / self.log2_phi

# 标准存储需求
standard_storage = total_bits

# 计算节省
storage_savings = (standard_storage - phi_storage) / standard_storage

results[scenario] = {
'total_original_bits': total_bits,
'phi_storage_bits': phi_storage,
'standard_storage_bits': standard_storage,
'storage_savings_ratio': storage_savings,
'storage_efficiency_improvement': standard_storage / phi_storage
}

return results

def transmission_efficiency_simulation(self, channel_capacities: List[float]) -> Dict[str, Any]:
"""
传输效率模拟
"""
results = {}

for capacity in channel_capacities:
# 信道容量(比特/秒)

# φ-编码的有效传输率
phi_effective_rate = capacity * self.log2_phi # 更高的信息密度

# 标准编码的有效传输率
standard_effective_rate = capacity * 1.0 # 假设标准编码密度为1

# Huffman编码的有效传输率
huffman_effective_rate = capacity * 0.9 # 典型效率

results[f'{capacity}_bps'] = {
'channel_capacity': capacity,
'phi_effective_rate': phi_effective_rate,
'standard_effective_rate': standard_effective_rate,
'huffman_effective_rate': huffman_effective_rate,
'phi_improvement_over_standard': phi_effective_rate / standard_effective_rate,
'phi_improvement_over_huffman': phi_effective_rate / huffman_effective_rate
}

return results

验证条件

1. 基本熵密度验证

verify_entropy_density_formula:
# φ-编码的熵密度等于log₂(φ)
eta_phi = H_phi / L_phi
assert abs(eta_phi - log2(phi)) < epsilon

2. 优势验证

verify_entropy_advantage:
# φ-编码的熵密度大于任何其他编码
for other_encoding in all_encodings:
eta_other = compute_entropy_density(other_encoding)
assert eta_phi > eta_other

3. 理论上界验证

verify_theoretical_bound:
# log₂(φ) 是理论上界
max_possible_density = log2(phi)
for encoding in all_possible_encodings:
eta = compute_entropy_density(encoding)
assert eta <= max_possible_density

实现要求

1. 精确数值计算

  • 使用高精度计算避免浮点误差
  • Fibonacci数的精确计算
  • 对数值的精确计算

2. 多种编码比较

  • 实现标准二进制编码
  • 实现约束下的二进制编码
  • 实现Huffman编码比较
  • 实现算术编码比较

3. 应用场景模拟

  • 数据压缩效果模拟
  • 存储优化效果模拟
  • 传输效率提升模拟

4. 理论边界验证

  • 验证φ-编码达到理论上界
  • 验证其他编码无法超越此上界
  • 验证约束条件的必要性

测试规范

1. 基础熵密度测试

验证φ-编码的熵密度计算正确性

2. 编码比较测试

验证φ-编码相对于其他编码的优势

3. 理论边界测试

验证log₂(φ)确实是理论上界

4. 应用效果测试

测试在实际应用中的性能提升

5. 数值稳定性测试

验证在不同输入下的计算稳定性

数学性质

1. 熵密度公式

eta_phi = H_phi / L_phi = log2(phi)0.694

2. 优势比

advantage = eta_phi / eta_other > 1

3. 理论上界

max_entropy_density = log2(phi)

物理意义

  1. 信息密度最优化

    • 在给定约束下实现最高的信息存储密度
    • 每个编码位承载最多的信息量
  2. 约束下的极限性能

    • no-11约束并不妨碍达到理论极限
    • φ-编码是约束条件下的最优解
  3. 实际应用价值

    • 数据压缩效率的理论极限
    • 存储和传输效率的根本提升

依赖关系

  • 依赖:T5-2(最大熵定理)- 约束下的最大熵
  • 依赖:T5-4(最优压缩定理)- φ-编码的最优性
  • 支持:数据压缩和存储优化应用