C20-2 ψₒ自指映射推论 - 形式化规范
依赖导入
import numpy as np
import math
from typing import List, Dict, Tuple, Optional, Any, Set
from dataclasses import dataclass
from enum import Enum
from collections import deque
# 从前置定理导入
from T20_1_formal import ZeckendorfString, PsiCollapse, CollapseAwareSystem
from T20_2_formal import TraceStructure, TraceLayerDecomposer, TraceComponent
from T20_3_formal import RealityShell, BoundaryFunction
1. 自指映射核心
1.1 自指状态表示
@dataclass
class SelfReferentialState:
"""自指状态的完整表示"""
def __init__(self, z_value: int):
self.phi = (1 + np.sqrt(5)) / 2
self.value = ZeckendorfString(z_value)
self.recursion_depth = 0
self.entropy = self._compute_entropy()
self.is_fixed_point = False
self.trace_layers = []
def _compute_entropy(self) -> float:
"""计算状态熵"""
# 基础熵
base_entropy = math.log(self.value.value + 1)
# 递归深度贡献
depth_entropy = self.recursion_depth * math.log(self.phi)
# trace层贡献
trace_entropy = sum(math.log(layer + 1) for layer in self.trace_layers) if self.trace_layers else 0
return base_entropy + depth_entropy + trace_entropy / (len(self.trace_layers) + 1)
def apply_self(self) -> 'SelfReferentialState':
"""应用自指操作 ψ → ψ(ψ)"""
# 核心自指计算
new_value = self._self_application()
# 创建新状态
new_state = SelfReferentialState(new_value)
new_state.recursion_depth = self.recursion_depth + 1
new_state.trace_layers = self.trace_layers.copy()
new_state.trace_layers.append(self.value.value)
# 检查是否是不动点
new_state.is_fixed_point = (new_value == self.value.value)
return new_state
def _self_application(self) -> int:
"""计算 ψ(ψ) 的核心逻辑"""
v = self.value.value
# 自指操作的数学定义
# ψ(ψ) = ψ作用于自身
# 在Zeckendorf空间中的实现
# 方法1: 迭代应用
result = v
for _ in range(min(v, 10)): # 限制迭代次数
# 每次应用产生新的Fibonacci分量
fib_components = self._get_fibonacci_components(result)
result = sum(fib_components) + len(fib_components)
# 确保满足no-11约束
z = ZeckendorfString(result)
if '11' not in z.representation:
break
# 如果违反,调整到最近的合法值
result = self._adjust_to_valid(result)
return result
def _get_fibonacci_components(self, n: int) -> List[int]:
"""获取n的Fibonacci分解"""
z = ZeckendorfString(n)
components = []
# 提取每个1对应的Fibonacci数
for i, bit in enumerate(reversed(z.representation)):
if bit == '1':
# 第i位对应F_{i+2}
components.append(self._fibonacci(i + 2))
return components
def _fibonacci(self, n: int) -> int:
"""计算第n个Fibonacci数"""
if n <= 0:
return 0
if n == 1:
return 1
a, b = 0, 1
for _ in range(2, n + 1):
a, b = b, a + b
return b
def _adjust_to_valid(self, value: int) -> int:
"""调整到满足no-11约束的最近值"""
# 向下调整
for v in range(value, 0, -1):
z = ZeckendorfString(v)
if '11' not in z.representation:
return v
return 1 # 默认返回1
1.2 自指映射算子
class SelfReferentialMapping:
"""ψₒ自指映射的完整实现"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.fixed_points = []
self.mapping_history = []
def apply(self, state: SelfReferentialState) -> SelfReferentialState:
"""应用自指映射"""
# 应用自指操作
new_state = state.apply_self()
# 记录历史
self.mapping_history.append({
'input': state.value.value,
'output': new_state.value.value,
'depth': new_state.recursion_depth,
'entropy': new_state.entropy
})
# 验证熵增
if new_state.entropy < state.entropy - 1e-10:
raise ValueError(f"违反熵增定律: {state.entropy} -> {new_state.entropy}")
return new_state
def find_fixed_point(self, max_iterations: int = 1000) -> Optional[SelfReferentialState]:
"""寻找自指映射的不动点"""
# 候选起始点(Fibonacci数更可能收敛到不动点)
fibonacci_numbers = [1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233]
for fib in fibonacci_numbers:
state = SelfReferentialState(fib)
visited = set()
for iteration in range(max_iterations):
if state.value.value in visited:
# 发现循环,检查是否是不动点
prev_state = state
state = self.apply(state)
if state.value.value == prev_state.value.value:
# 找到不动点
state.is_fixed_point = True
self.fixed_points.append(state)
return state
else:
# 是循环但不是不动点
break
visited.add(state.value.value)
state = self.apply(state)
return None
def analyze_convergence(self, initial_state: SelfReferentialState,
max_iterations: int = 100) -> Dict[str, Any]:
"""分析向不动点的收敛"""
states = [initial_state]
distances = []
# 首先找到不动点
fixed_point = self.find_fixed_point()
if not fixed_point:
return {'error': 'No fixed point found'}
fp_value = fixed_point.value.value
for i in range(max_iterations):
current = states[-1]
next_state = self.apply(current)
states.append(next_state)
# 计算到不动点的距离
distance = abs(next_state.value.value - fp_value)
distances.append(distance)
# 检查是否收敛
if distance == 0:
break
# 计算收敛速率
convergence_rates = []
for i in range(1, len(distances)):
if distances[i-1] > 0:
rate = distances[i] / distances[i-1]
convergence_rates.append(rate)
avg_rate = np.mean(convergence_rates) if convergence_rates else 0
return {
'fixed_point': fp_value,
'iterations': len(states) - 1,
'final_distance': distances[-1] if distances else float('inf'),
'convergence_rate': avg_rate,
'theoretical_rate': 1 / self.phi, # 理论收敛速率
'states': [s.value.value for s in states],
'distances': distances
}
2. 递归深度分析
2.1 递归深度追踪器
class RecursionDepthTracker:
"""追踪和分析递归深度"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.depth_entropy_map = {}
def track_recursion(self, initial_state: SelfReferentialState,
max_depth: int) -> Dict[str, Any]:
"""追踪递归过程中的熵变化"""
mapping = SelfReferentialMapping()
states = [initial_state]
entropies = [initial_state.entropy]
for depth in range(1, max_depth + 1):
# 应用映射
new_state = mapping.apply(states[-1])
states.append(new_state)
entropies.append(new_state.entropy)
# 记录深度-熵关系
self.depth_entropy_map[depth] = {
'state': new_state.value.value,
'entropy': new_state.entropy,
'entropy_increase': new_state.entropy - initial_state.entropy
}
# 验证递归深度定理
theoretical_increases = []
actual_increases = []
for d in range(1, max_depth + 1):
# 理论预测:S(ψ_d) - S(ψ_0) = d * log(φ) + O(log(d))
theoretical = d * math.log(self.phi)
actual = entropies[d] - entropies[0]
theoretical_increases.append(theoretical)
actual_increases.append(actual)
# 计算误差
errors = [abs(a - t) for a, t in zip(actual_increases, theoretical_increases)]
max_error = max(errors) if errors else 0
# 验证O(log(d))误差界
error_bound_satisfied = all(
err <= math.log(d + 1) + 1 for d, err in enumerate(errors)
)
return {
'depths': list(range(max_depth + 1)),
'entropies': entropies,
'entropy_increases': actual_increases,
'theoretical_increases': theoretical_increases,
'max_error': max_error,
'error_bound_satisfied': error_bound_satisfied,
'final_state': states[-1].value.value
}
2.2 自指循环检测器
class SelfReferentialCycleDetector:
"""检测自指映射的周期性"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def detect_cycle(self, initial_state: SelfReferentialState,
max_iterations: int = 1000) -> Dict[str, Any]:
"""检测自指循环"""
mapping = SelfReferentialMapping()
# Floyd循环检测算法
slow = initial_state
fast = initial_state
# Phase 1: 检测是否存在循环
cycle_found = False
for _ in range(max_iterations):
slow = mapping.apply(slow)
fast = mapping.apply(mapping.apply(fast))
if slow.value.value == fast.value.value:
cycle_found = True
break
if not cycle_found:
return {'cycle_found': False}
# Phase 2: 找到循环起点
mu = 0 # 循环起点
slow = initial_state
while slow.value.value != fast.value.value:
slow = mapping.apply(slow)
fast = mapping.apply(fast)
mu += 1
# Phase 3: 找到循环长度
cycle_length = 1
fast = mapping.apply(slow)
while slow.value.value != fast.value.value:
fast = mapping.apply(fast)
cycle_length += 1
# 收集循环中的所有状态
cycle_states = []
state = slow
for _ in range(cycle_length):
cycle_states.append(state.value.value)
state = mapping.apply(state)
# 验证周期与φ的关系
# T_ψ 应该满足 φ^T ≡ 1 (mod 某个Fibonacci数)
phi_powers = []
for t in range(1, cycle_length + 1):
phi_power = self.phi ** t
phi_powers.append(phi_power)
# 检查是否与Fibonacci数相关
fibonacci_related = any(
state in [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
for state in cycle_states
)
return {
'cycle_found': True,
'cycle_start': mu,
'cycle_length': cycle_length,
'cycle_states': cycle_states,
'fibonacci_related': fibonacci_related,
'phi_power_at_period': self.phi ** cycle_length
}
3. 收敛性分析
3.1 收敛速率计算器
class ConvergenceAnalyzer:
"""分析自指映射的收敛性质"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def compute_lipschitz_constant(self, mapping: SelfReferentialMapping,
test_range: range) -> float:
"""计算映射的Lipschitz常数"""
max_ratio = 0
for i in test_range:
for j in test_range:
if i != j:
state_i = SelfReferentialState(i)
state_j = SelfReferentialState(j)
mapped_i = mapping.apply(state_i)
mapped_j = mapping.apply(state_j)
dist_before = abs(i - j)
dist_after = abs(mapped_i.value.value - mapped_j.value.value)
if dist_before > 0:
ratio = dist_after / dist_before
max_ratio = max(max_ratio, ratio)
return max_ratio
def verify_contraction(self, mapping: SelfReferentialMapping) -> bool:
"""验证映射是否是压缩映射"""
# 在小范围内测试
lipschitz = self.compute_lipschitz_constant(mapping, range(1, 100))
# 理论预测:Lipschitz常数应该 ≤ 1/φ
theoretical_bound = 1 / self.phi
return lipschitz <= theoretical_bound + 0.1 # 允许小误差
def analyze_basin_of_attraction(self, mapping: SelfReferentialMapping,
fixed_point: int,
test_range: range) -> Dict[str, Any]:
"""分析不动点的吸引域"""
converging_states = []
diverging_states = []
for initial_value in test_range:
state = SelfReferentialState(initial_value)
# 迭代检查是否收敛到不动点
converged = False
for _ in range(100):
state = mapping.apply(state)
if abs(state.value.value - fixed_point) < 1:
converged = True
break
if converged:
converging_states.append(initial_value)
else:
diverging_states.append(initial_value)
basin_size = len(converging_states)
total_tested = len(test_range)
return {
'fixed_point': fixed_point,
'basin_size': basin_size,
'basin_ratio': basin_size / total_tested,
'converging_states': converging_states[:10], # 前10个
'diverging_states': diverging_states[:10]
}
4. 完整自指系统
4.1 自指系统集成
class CompleteSelfReferentialSystem:
"""完整的ψₒ自指映射系统"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.mapping = SelfReferentialMapping()
self.depth_tracker = RecursionDepthTracker()
self.cycle_detector = SelfReferentialCycleDetector()
self.convergence_analyzer = ConvergenceAnalyzer()
def full_analysis(self, initial_value: int) -> Dict[str, Any]:
"""对给定初始值进行完整分析"""
initial_state = SelfReferentialState(initial_value)
results = {
'initial_value': initial_value,
'initial_entropy': initial_state.entropy
}
# 1. 寻找不动点
fixed_point = self.mapping.find_fixed_point()
if fixed_point:
results['fixed_point'] = {
'value': fixed_point.value.value,
'entropy': fixed_point.entropy,
'is_fibonacci': fixed_point.value.value in [1,2,3,5,8,13,21,34,55,89]
}
# 2. 分析递归深度
depth_analysis = self.depth_tracker.track_recursion(initial_state, 20)
results['recursion_depth'] = {
'max_depth': 20,
'final_entropy': depth_analysis['entropies'][-1],
'entropy_increase': depth_analysis['entropies'][-1] - initial_state.entropy,
'theory_satisfied': depth_analysis['error_bound_satisfied']
}
# 3. 检测周期
cycle_info = self.cycle_detector.detect_cycle(initial_state)
results['cycle'] = cycle_info
# 4. 分析收敛性
if fixed_point:
convergence = self.mapping.analyze_convergence(initial_state)
results['convergence'] = {
'converged': convergence['final_distance'] == 0,
'iterations': convergence['iterations'],
'rate': convergence['convergence_rate']
}
# 5. 验证压缩性质
is_contraction = self.convergence_analyzer.verify_contraction(self.mapping)
results['is_contraction'] = is_contraction
return results
def validate_theorems(self) -> Dict[str, bool]:
"""验证所有理论预测"""
validations = {}
# 1. 不动点存在性
fp = self.mapping.find_fixed_point()
validations['fixed_point_exists'] = (fp is not None)
if fp:
validations['fixed_point_is_fibonacci'] = fp.value.value in [1,2,3,5,8,13,21,34,55,89]
# 2. 递归深度定理
test_state = SelfReferentialState(5)
depth_result = self.depth_tracker.track_recursion(test_state, 10)
validations['recursion_depth_theorem'] = depth_result['error_bound_satisfied']
# 3. 周期性
cycle = self.cycle_detector.detect_cycle(test_state)
if cycle['cycle_found']:
validations['cycle_fibonacci_related'] = cycle['fibonacci_related']
# 4. 收敛速率
validations['contraction_mapping'] = self.convergence_analyzer.verify_contraction(self.mapping)
return validations
注记: C20-2的形式化规范提供了ψₒ自指映射的完整实现,包括不动点计算、递归深度追踪、周期检测和收敛性分析。所有实现严格遵守Zeckendorf编码的no-11约束,并满足熵增定律。