Skip to main content

C20-1 collapse-aware观测推论 - 形式化规范

依赖导入

import numpy as np
import math
from typing import List, Dict, Tuple, Optional, Any, Set
from dataclasses import dataclass
from enum import Enum
from datetime import datetime

# 从前置定理导入
from T20_1_formal import ZeckendorfString, PsiCollapse, CollapseAwareSystem
from T20_2_formal import TraceStructure, TraceLayerDecomposer
from T20_3_formal import RealityShell, BoundaryFunction, InformationFlow

1. 观测者模型

1.1 观测者状态

@dataclass
class ObserverState:
"""观测者的量子态表示"""

def __init__(self, z_state: ZeckendorfString):
self.phi = (1 + np.sqrt(5)) / 2
self.state = z_state
self.memory = [] # 观测记忆
self.entropy = self._compute_entropy()
self.observation_count = 0

def _compute_entropy(self) -> float:
"""计算观测者熵"""
# 基础熵
base_entropy = math.log(self.state.value + 1)

# 记忆贡献
memory_entropy = 0.0
if self.memory:
for mem in self.memory:
memory_entropy += mem['information_content'] / len(self.memory)

return base_entropy + memory_entropy

def update_state(self, observation_result: Dict[str, Any]):
"""根据观测结果更新状态"""
# 提取信息
info = observation_result['information']

# 更新Zeckendorf状态
new_value = self.state.value + int(info * self.phi)
self.state = ZeckendorfString(new_value)

# 记录到记忆
self.memory.append({
'timestamp': observation_result['timestamp'],
'information_content': info,
'system_state': observation_result['system_state']
})

# 限制记忆大小
if len(self.memory) > 100:
self.memory = self.memory[-100:]

# 更新熵
self.entropy = self._compute_entropy()
self.observation_count += 1

def get_observation_capacity(self) -> float:
"""获取观测能力"""
# 基于状态复杂度和熵
return self.phi ** (self.entropy / math.log(self.phi))

1.2 观测算子

class ObservationOperator:
"""观测算子:实现观测者对系统的观测"""

def __init__(self, observer_state: ObserverState):
self.phi = (1 + np.sqrt(5)) / 2
self.observer = observer_state
self.observation_history = []
self.precision_limit = math.log(self.phi)

def observe(self, system: CollapseAwareSystem) -> Dict[str, Any]:
"""执行观测,返回观测结果和反作用"""
# 记录初始状态
initial_system_state = system.current_state.value
initial_observer_entropy = self.observer.entropy
initial_system_entropy = system.compute_total_entropy()

# 执行观测(导致collapse)
observation = self._extract_information(system)

# 系统因观测而collapse
system.execute_collapse()

# 计算反作用
final_system_state = system.current_state.value
final_observer_entropy = self.observer.entropy
final_system_entropy = system.compute_total_entropy()

backaction = self._compute_backaction(
initial_system_state, final_system_state,
initial_observer_entropy, final_observer_entropy
)

# 验证φ-比例关系
self._verify_phi_proportion(backaction)

# 验证熵增
total_entropy_increase = (final_system_entropy + final_observer_entropy) - \
(initial_system_entropy + initial_observer_entropy)

if total_entropy_increase < -1e-10: # 允许数值误差
raise ValueError(f"违反熵增定律: ΔS = {total_entropy_increase}")

result = {
'observation': observation,
'backaction': backaction,
'entropy_increase': total_entropy_increase,
'timestamp': datetime.now(),
'observer_state': self.observer.state.value,
'system_state': system.current_state.value
}

# 更新观测者状态
self.observer.update_state(result)

# 记录历史
self.observation_history.append(result)

return result

def _extract_information(self, system: CollapseAwareSystem) -> Dict[str, Any]:
"""从系统提取信息"""
# 计算可观测量
trace = system.compute_phi_trace()

# 观测精度受限
precision = min(self.observer.get_observation_capacity(),
self.precision_limit)

# 添加观测噪声
noise = np.random.normal(0, 1/precision)
observed_trace = trace + noise

# 提取的信息量
information = math.log(abs(observed_trace) + 1) / math.log(self.phi)

return {
'trace': observed_trace,
'information': information,
'precision': precision,
'raw_trace': trace
}

def _compute_backaction(self, initial_sys: int, final_sys: int,
initial_obs: float, final_obs: float) -> Dict[str, float]:
"""计算观测反作用"""
# 系统状态改变
sys_change = abs(final_sys - initial_sys)

# 观测者熵改变
obs_change = abs(final_obs - initial_obs)

# φ-比例关系
expected_ratio = 1 / self.phi
actual_ratio = obs_change / (sys_change + 1) # 避免除零

return {
'system_change': sys_change,
'observer_change': obs_change,
'expected_ratio': expected_ratio,
'actual_ratio': actual_ratio,
'deviation': abs(actual_ratio - expected_ratio)
}

def _verify_phi_proportion(self, backaction: Dict[str, float]):
"""验证φ-比例关系"""
deviation = backaction['deviation']

# 允许10%的误差
if deviation > 0.1 * backaction['expected_ratio']:
print(f"警告: φ-比例关系偏差较大: {deviation:.4f}")

2. 观测精度界限

2.1 精度计算器

class ObservationPrecisionCalculator:
"""观测精度计算和界限验证"""

def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.min_info_unit = math.log2(self.phi)
self.min_time_unit = math.log(self.phi)

def compute_precision_bound(self, info_content: float,
observation_time: float) -> Dict[str, Any]:
"""计算观测精度界限"""
# 不确定性乘积
uncertainty_product = info_content * observation_time

# 理论下界
lower_bound = self.min_info_unit * self.min_time_unit

# 验证界限
satisfies_bound = uncertainty_product >= lower_bound - 1e-10

# 相对精度
relative_precision = uncertainty_product / lower_bound if lower_bound > 0 else float('inf')

return {
'info_content': info_content,
'observation_time': observation_time,
'uncertainty_product': uncertainty_product,
'lower_bound': lower_bound,
'satisfies_bound': satisfies_bound,
'relative_precision': relative_precision
}

def optimal_observation_strategy(self, target_info: float) -> Dict[str, float]:
"""计算最优观测策略"""
# 给定目标信息量,计算最小观测时间
min_time = self.min_time_unit * target_info / self.min_info_unit

# 实际可行时间(考虑实际约束)
practical_time = max(min_time, self.min_time_unit)

# 对应的信息精度
achievable_info = self.min_info_unit * practical_time / self.min_time_unit

return {
'target_info': target_info,
'min_time': min_time,
'practical_time': practical_time,
'achievable_info': achievable_info,
'efficiency': target_info / achievable_info if achievable_info > 0 else 0
}

2.2 连续观测模型

class ContinuousObservationModel:
"""连续观测模型(量子Zeno效应)"""

def __init__(self, observer: ObserverState):
self.phi = (1 + np.sqrt(5)) / 2
self.observer = observer
self.observation_op = ObservationOperator(observer)
self.zeno_threshold = 1 / math.log(self.phi)

def continuous_observe(self, system: CollapseAwareSystem,
frequency: float,
duration: float) -> Dict[str, Any]:
"""执行连续观测"""
# 观测间隔
interval = 1 / frequency if frequency > 0 else float('inf')

# 观测次数
n_observations = int(duration / interval)

# 记录系统演化
evolution = []
zeno_frozen = False

for i in range(n_observations):
# 执行观测
result = self.observation_op.observe(system)

# 记录状态
evolution.append({
'time': i * interval,
'system_state': system.current_state.value,
'observer_entropy': self.observer.entropy,
'backaction': result['backaction']['system_change']
})

# 检查Zeno效应
if result['backaction']['system_change'] < self.zeno_threshold:
zeno_frozen = True
break

return {
'frequency': frequency,
'duration': duration,
'n_observations': len(evolution),
'evolution': evolution,
'zeno_frozen': zeno_frozen,
'final_state': system.current_state.value
}

def verify_zeno_effect(self, frequency: float) -> bool:
"""验证量子Zeno效应"""
# 理论预测:当频率超过临界值时系统冻结
critical_frequency = 1 / math.log(self.phi)

return frequency > critical_frequency

3. 观测者纠缠

3.1 纠缠观测系统

class EntangledObservationSystem:
"""纠缠观测系统:多个观测者观测纠缠态"""

def __init__(self, observers: List[ObserverState]):
self.phi = (1 + np.sqrt(5)) / 2
self.observers = observers
self.observation_ops = [ObservationOperator(obs) for obs in observers]
self.entanglement_matrix = self._initialize_entanglement()

def _initialize_entanglement(self) -> np.ndarray:
"""初始化纠缠矩阵"""
n = len(self.observers)
matrix = np.zeros((n, n))

for i in range(n):
for j in range(n):
if i != j:
# φ-关联强度
matrix[i, j] = 1 / (self.phi ** abs(i - j))

return matrix

def entangled_observation(self, entangled_systems: List[CollapseAwareSystem]) -> Dict[str, Any]:
"""执行纠缠观测"""
if len(entangled_systems) != len(self.observers):
raise ValueError("系统数量必须与观测者数量匹配")

results = []
correlations = np.zeros((len(self.observers), len(self.observers)))

# 每个观测者观测对应系统
for i, (obs_op, system) in enumerate(zip(self.observation_ops, entangled_systems)):
result = obs_op.observe(system)
results.append(result)

# 通过纠缠影响其他系统
for j, other_system in enumerate(entangled_systems):
if i != j:
# 纠缠导致的状态改变
influence = self.entanglement_matrix[i, j] * result['backaction']['system_change']
other_system.current_state = ZeckendorfString(
int(other_system.current_state.value + influence)
)

# 计算观测关联
for i in range(len(results)):
for j in range(len(results)):
if i != j:
corr = self._compute_correlation(results[i], results[j])
correlations[i, j] = corr

return {
'individual_results': results,
'correlation_matrix': correlations,
'average_correlation': np.mean(np.abs(correlations)),
'max_correlation': np.max(np.abs(correlations))
}

def _compute_correlation(self, result1: Dict, result2: Dict) -> float:
"""计算两个观测结果的关联"""
# 使用信息量的关联
info1 = result1['observation']['information']
info2 = result2['observation']['information']

# 归一化关联
if info1 * info2 == 0:
return 0

correlation = 2 * min(info1, info2) / (info1 + info2)

# φ-调制
return correlation / self.phi

4. 完整观测系统

4.1 观测系统集成

class CompleteObservationSystem:
"""完整的collapse-aware观测系统"""

def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.precision_calc = ObservationPrecisionCalculator()
self.observers = []
self.systems = []
self.observation_log = []

def add_observer(self, z_value: int) -> ObserverState:
"""添加观测者"""
observer = ObserverState(ZeckendorfString(z_value))
self.observers.append(observer)
return observer

def add_system(self, z_value: int) -> CollapseAwareSystem:
"""添加被观测系统"""
system = CollapseAwareSystem(ZeckendorfString(z_value))
self.systems.append(system)
return system

def perform_observation(self, observer_idx: int, system_idx: int) -> Dict[str, Any]:
"""执行单次观测"""
if observer_idx >= len(self.observers) or system_idx >= len(self.systems):
raise IndexError("观测者或系统索引超出范围")

observer = self.observers[observer_idx]
system = self.systems[system_idx]

# 创建观测算子
obs_op = ObservationOperator(observer)

# 记录观测开始时间
start_time = datetime.now()

# 执行观测
result = obs_op.observe(system)

# 记录观测结束时间
end_time = datetime.now()
observation_time = (end_time - start_time).total_seconds()

# 验证精度界限
precision_check = self.precision_calc.compute_precision_bound(
result['observation']['information'],
observation_time
)

# 完整记录
full_result = {
'observer_idx': observer_idx,
'system_idx': system_idx,
'observation_result': result,
'precision_check': precision_check,
'timestamp': start_time
}

self.observation_log.append(full_result)

return full_result

def analyze_observation_history(self) -> Dict[str, Any]:
"""分析观测历史"""
if not self.observation_log:
return {'error': 'No observations recorded'}

# 统计分析
total_observations = len(self.observation_log)
total_entropy_increase = sum(log['observation_result']['entropy_increase']
for log in self.observation_log)

# 精度统计
precision_violations = sum(1 for log in self.observation_log
if not log['precision_check']['satisfies_bound'])

# 反作用统计
avg_backaction = np.mean([log['observation_result']['backaction']['system_change']
for log in self.observation_log])

return {
'total_observations': total_observations,
'total_entropy_increase': total_entropy_increase,
'avg_entropy_per_observation': total_entropy_increase / total_observations,
'precision_violations': precision_violations,
'violation_rate': precision_violations / total_observations,
'avg_backaction': avg_backaction,
'observation_log': self.observation_log
}

注记: C20-1的形式化规范提供了完整的观测者模型实现,包括观测算子、精度界限、连续观测和纠缠观测。所有实现严格遵守Zeckendorf编码的no-11约束,并满足熵增定律和φ-比例关系。