C13-3 φ-并行计算框架形式化规范
1. φ-并行处理器模型
1.1 处理器定义
@dataclass
class PhiProcessor:
"""φ-并行处理器"""
def __init__(self, rank: int, capacity: float):
self.phi = (1 + np.sqrt(5)) / 2
self.rank = rank
self.capacity = capacity * (self.phi ** rank) # φ-分级能力
self.current_load = 0.0
self.task_queue = []
self.communication_channels = {}
def compute_phi_load_ratio(self) -> float:
"""计算φ-负载比率"""
return self.current_load / (self.capacity * self.phi ** (-self.rank))
def can_accept_task(self, task_size: float) -> bool:
"""判断是否可接受任务"""
projected_load = self.current_load + task_size
return projected_load <= self.capacity
def execute_task(self, task: 'PhiTask') -> 'TaskResult':
"""执行φ-任务"""
start_time = time.time()
# φ-优化执行
if task.is_divisible() and task.size > self.phi ** 4:
return self.phi_divide_and_execute(task)
else:
result = self.direct_execute(task)
execution_time = time.time() - start_time
return TaskResult(result, execution_time, task.size)
def phi_divide_and_execute(self, task: 'PhiTask') -> 'TaskResult':
"""φ-分治执行"""
# 按φ比率分解
subtasks = task.phi_split()
results = []
for subtask in subtasks:
result = self.execute_task(subtask)
results.append(result)
return task.merge_results(results)
1.2 任务模型
@dataclass
class PhiTask:
"""φ-任务模型"""
def __init__(self, data: Any, size: int):
self.phi = (1 + np.sqrt(5)) / 2
self.data = data
self.size = size
self.entropy = self.compute_entropy()
self.priority = self.compute_phi_priority()
def phi_split(self) -> List['PhiTask']:
"""φ-分解任务"""
if self.size <= 4:
return [self]
split_point = int(self.size / self.phi)
# 确保分割有效
if split_point == 0:
split_point = 1
if split_point >= self.size:
split_point = self.size - 1
subtask1 = PhiTask(self.data[:split_point], split_point)
subtask2 = PhiTask(self.data[split_point:], self.size - split_point)
return [subtask1, subtask2]
def merge_results(self, results: List['TaskResult']) -> 'TaskResult':
"""合并φ-任务结果"""
merged_data = []
total_time = 0
total_size = 0
for result in results:
merged_data.extend(result.data)
total_time += result.execution_time
total_size += result.task_size
return TaskResult(merged_data, total_time, total_size)
def compute_entropy(self) -> float:
"""计算任务熵"""
if isinstance(self.data, (list, str)):
from collections import Counter
if not self.data:
return 0.0
counts = Counter(self.data)
total = len(self.data)
entropy = 0.0
for count in counts.values():
if count > 0:
p = count / total
entropy -= p * np.log2(p)
return entropy
return 0.0
def compute_phi_priority(self) -> float:
"""计算φ-优先级"""
# 基于任务大小和熵的φ-权重
size_factor = np.log(self.size + 1) / np.log(self.phi)
entropy_factor = self.entropy
return size_factor * self.phi + entropy_factor
2. φ-负载均衡器
2.1 负载均衡算法
class PhiLoadBalancer:
"""φ-负载均衡器"""
def __init__(self, processors: List[PhiProcessor]):
self.phi = (1 + np.sqrt(5)) / 2
self.processors = processors
self.total_capacity = sum(p.capacity for p in processors)
def balance_load(self, tasks: List[PhiTask]) -> Dict[int, List[PhiTask]]:
"""φ-负载均衡分配"""
# 按φ-优先级排序任务
sorted_tasks = sorted(tasks, key=lambda t: t.priority, reverse=True)
# 初始化分配
allocation = {p.rank: [] for p in self.processors}
for task in sorted_tasks:
# 选择最优处理器
best_processor = self.select_optimal_processor(task)
allocation[best_processor.rank].append(task)
best_processor.current_load += task.size
return allocation
def select_optimal_processor(self, task: PhiTask) -> PhiProcessor:
"""选择最优处理器"""
best_processor = None
best_score = float('inf')
for processor in self.processors:
if processor.can_accept_task(task.size):
# φ-评分函数
load_factor = processor.current_load / processor.capacity
phi_factor = self.phi ** (-processor.rank)
entropy_factor = 1.0 / (1.0 + task.entropy)
score = load_factor / (phi_factor * entropy_factor)
if score < best_score:
best_score = score
best_processor = processor
return best_processor if best_processor else self.processors[0]
def rebalance_dynamic(self) -> None:
"""动态重平衡"""
# 计算平均负载
avg_load = sum(p.current_load for p in self.processors) / len(self.processors)
# 识别过载和轻载处理器
overloaded = [p for p in self.processors if p.current_load > avg_load * self.phi]
underloaded = [p for p in self.processors if p.current_load < avg_load / self.phi]
# φ-工作窃取
for overloaded_proc in overloaded:
for underloaded_proc in underloaded:
if overloaded_proc.task_queue:
# 按φ比率窃取任务
steal_count = max(1, int(len(overloaded_proc.task_queue) / self.phi))
stolen_tasks = overloaded_proc.task_queue[-steal_count:]
# 转移任务
overloaded_proc.task_queue = overloaded_proc.task_queue[:-steal_count]
underloaded_proc.task_queue.extend(stolen_tasks)
# 更新负载
transferred_load = sum(task.size for task in stolen_tasks)
overloaded_proc.current_load -= transferred_load
underloaded_proc.current_load += transferred_load
2.2 工作窃取算法
class PhiWorkStealing:
"""φ-工作窃取调度器"""
def __init__(self, processors: List[PhiProcessor]):
self.phi = (1 + np.sqrt(5)) / 2
self.processors = processors
self.victim_selection_cache = {}
def schedule_tasks(self, tasks: List[PhiTask]) -> None:
"""调度任务执行"""
# 初始分配
self.initial_distribution(tasks)
# 启动并行执行
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for processor in self.processors:
future = executor.submit(self.processor_worker, processor)
futures.append(future)
# 等待完成
concurrent.futures.wait(futures)
def initial_distribution(self, tasks: List[PhiTask]) -> None:
"""初始任务分配"""
# 按φ-比率分配到处理器
total_tasks = len(tasks)
for i, processor in enumerate(self.processors):
# φ-比率分配
task_count = int(total_tasks * (self.phi ** (-i)))
assigned_tasks = tasks[:task_count]
tasks = tasks[task_count:]
processor.task_queue.extend(assigned_tasks)
processor.current_load = sum(task.size for task in assigned_tasks)
def processor_worker(self, processor: PhiProcessor) -> None:
"""处理器工作线程"""
while True:
# 执行本地任务
if processor.task_queue:
task = processor.task_queue.pop(0)
result = processor.execute_task(task)
processor.current_load -= task.size
else:
# 尝试窃取任务
stolen_task = self.steal_task(processor)
if stolen_task:
result = processor.execute_task(stolen_task)
else:
# 检查全局是否完成
if self.all_processors_idle():
break
time.sleep(0.001) # 短暂等待
def steal_task(self, thief: PhiProcessor) -> Optional[PhiTask]:
"""φ-工作窃取"""
# 选择受害者
victim = self.select_victim(thief)
if not victim or not victim.task_queue:
return None
# 按φ比率窃取
steal_count = max(1, int(len(victim.task_queue) / self.phi))
if len(victim.task_queue) >= steal_count:
# 窃取任务(从尾部,减少冲突)
stolen_tasks = victim.task_queue[-steal_count:]
victim.task_queue = victim.task_queue[:-steal_count]
# 更新负载
stolen_load = sum(task.size for task in stolen_tasks)
victim.current_load -= stolen_load
thief.current_load += stolen_load
# 返回第一个任务,其余加入队列
thief.task_queue.extend(stolen_tasks[1:])
return stolen_tasks[0]
return None
def select_victim(self, thief: PhiProcessor) -> Optional[PhiProcessor]:
"""选择窃取目标"""
# φ-启发式选择
candidates = [p for p in self.processors
if p != thief and p.task_queue]
if not candidates:
return None
# 选择负载最重的处理器
return max(candidates, key=lambda p: p.current_load)
def all_processors_idle(self) -> bool:
"""检查所有处理器是否空闲"""
return all(not p.task_queue for p in self.processors)
3. φ-通信系统
3.1 通信拓扑
class PhiCommunicationTopology:
"""φ-通信拓扑"""
def __init__(self, num_processors: int):
self.phi = (1 + np.sqrt(5)) / 2
self.num_processors = num_processors
self.topology = self.build_phi_topology()
self.message_buffers = {}
def build_phi_topology(self) -> Dict[int, List[int]]:
"""构建φ-拓扑结构"""
topology = {}
for i in range(self.num_processors):
neighbors = []
# φ-连接模式
phi_distance = int(self.phi ** (i % 4)) # 模4循环
# 向前连接
forward = (i + phi_distance) % self.num_processors
if forward != i:
neighbors.append(forward)
# 向后连接
backward = (i - phi_distance) % self.num_processors
if backward != i and backward not in neighbors:
neighbors.append(backward)
# 黄金比率连接
golden_jump = int(i * self.phi) % self.num_processors
if golden_jump != i and golden_jump not in neighbors:
neighbors.append(golden_jump)
topology[i] = neighbors
return topology
def find_phi_path(self, source: int, destination: int) -> List[int]:
"""寻找φ-最短路径"""
if source == destination:
return [source]
# 使用φ-BFS
queue = [(source, [source])]
visited = {source}
while queue:
current, path = queue.pop(0)
for neighbor in self.topology.get(current, []):
if neighbor == destination:
return path + [neighbor]
if neighbor not in visited:
visited.add(neighbor)
queue.append((neighbor, path + [neighbor]))
return [] # 无路径
def route_message(self, source: int, destination: int,
message: 'PhiMessage') -> None:
"""路由φ-消息"""
path = self.find_phi_path(source, destination)
if not path:
raise ValueError(f"No path from {source} to {destination}")
# 沿路径传递消息
for i in range(len(path) - 1):
current = path[i]
next_hop = path[i + 1]
# 添加到缓冲区
if next_hop not in self.message_buffers:
self.message_buffers[next_hop] = []
self.message_buffers[next_hop].append(message)
3.2 消息传递
@dataclass
class PhiMessage:
"""φ-消息"""
def __init__(self, sender: int, receiver: int, data: Any, priority: int = 0):
self.phi = (1 + np.sqrt(5)) / 2
self.sender = sender
self.receiver = receiver
self.data = data
self.priority = priority
self.timestamp = time.time()
self.entropy = self.compute_message_entropy()
self.compressed_data = self.phi_compress(data)
def phi_compress(self, data: Any) -> bytes:
"""φ-压缩数据"""
import pickle
import zlib
# 序列化
serialized = pickle.dumps(data)
# φ-压缩(利用no-11约束)
# 将连续的11替换为特殊标记
compressed = serialized.replace(b'11', b'\x00\x01')
# 标准压缩
final_compressed = zlib.compress(compressed)
return final_compressed
def phi_decompress(self, compressed_data: bytes) -> Any:
"""φ-解压数据"""
import pickle
import zlib
# 解压
decompressed = zlib.decompress(compressed_data)
# 恢复11模式
restored = decompressed.replace(b'\x00\x01', b'11')
# 反序列化
return pickle.loads(restored)
def compute_message_entropy(self) -> float:
"""计算消息熵"""
import pickle
serialized = pickle.dumps(self.data)
if not serialized:
return 0.0
from collections import Counter
byte_counts = Counter(serialized)
total_bytes = len(serialized)
entropy = 0.0
for count in byte_counts.values():
p = count / total_bytes
entropy -= p * np.log2(p)
return entropy
class PhiMessagePassing:
"""φ-消息传递系统"""
def __init__(self, topology: PhiCommunicationTopology):
self.phi = (1 + np.sqrt(5)) / 2
self.topology = topology
self.pending_messages = []
self.delivered_messages = []
def send_message(self, message: PhiMessage) -> None:
"""发送φ-消息"""
# φ-优先级调度
self.pending_messages.append(message)
self.pending_messages.sort(key=lambda m: (-m.priority, m.timestamp))
# 路由消息
self.topology.route_message(message.sender, message.receiver, message)
def broadcast_message(self, sender: int, data: Any) -> None:
"""广播φ-消息"""
# φ-树形广播
root = sender
visited = {root}
# 构建φ-广播树
broadcast_tree = self.build_phi_broadcast_tree(root)
# 沿树发送消息
for parent, children in broadcast_tree.items():
for child in children:
message = PhiMessage(parent, child, data, priority=1)
self.send_message(message)
def build_phi_broadcast_tree(self, root: int) -> Dict[int, List[int]]:
"""构建φ-广播树"""
tree = {root: []}
queue = [root]
visited = {root}
while queue:
current = queue.pop(0)
neighbors = self.topology.topology.get(current, [])
# 按φ-顺序选择子节点
for neighbor in neighbors:
if neighbor not in visited:
# φ-选择策略
if len(tree[current]) < int(self.phi * 2): # 最多φ*2个子节点
tree[current].append(neighbor)
tree[neighbor] = []
visited.add(neighbor)
queue.append(neighbor)
return tree
def collect_messages(self, processor_id: int) -> List[PhiMessage]:
"""收集处理器的消息"""
messages = self.topology.message_buffers.get(processor_id, [])
self.topology.message_buffers[processor_id] = []
# 按φ-优先级排序
messages.sort(key=lambda m: (-m.priority, m.entropy / self.phi))
return messages
4. φ-同步机制
4.1 熵增同步
class PhiEntropySync:
"""φ-熵增同步机制"""
def __init__(self, processors: List[PhiProcessor]):
self.phi = (1 + np.sqrt(5)) / 2
self.processors = processors
self.global_entropy = 0.0
self.entropy_history = []
def compute_system_entropy(self) -> float:
"""计算系统总熵"""
total_entropy = 0.0
for processor in self.processors:
# 处理器状态熵
task_entropy = sum(task.entropy for task in processor.task_queue)
load_entropy = self.compute_load_entropy(processor)
total_entropy += task_entropy + load_entropy
return total_entropy
def compute_load_entropy(self, processor: PhiProcessor) -> float:
"""计算负载熵"""
if processor.capacity == 0:
return 0.0
load_ratio = processor.current_load / processor.capacity
if load_ratio == 0 or load_ratio == 1:
return 0.0
return -(load_ratio * np.log2(load_ratio) +
(1-load_ratio) * np.log2(1-load_ratio))
def wait_for_entropy_sync(self, target_entropy: float, timeout: float = 10.0) -> bool:
"""等待熵增同步"""
start_time = time.time()
while time.time() - start_time < timeout:
current_entropy = self.compute_system_entropy()
if abs(current_entropy - target_entropy) < 0.1:
return True
time.sleep(0.01) # 10ms检查间隔
return False
def synchronize_processors(self) -> None:
"""同步所有处理器"""
# 记录当前系统熵
current_entropy = self.compute_system_entropy()
self.entropy_history.append(current_entropy)
# φ-同步点
if len(self.entropy_history) >= int(self.phi * 10):
# 计算熵增率
entropy_rate = self.compute_entropy_rate()
# 如果熵增率过低,强制同步
if entropy_rate < 1.0 / self.phi:
self.force_synchronization()
def compute_entropy_rate(self) -> float:
"""计算熵增率"""
if len(self.entropy_history) < 2:
return 0.0
recent_entropies = self.entropy_history[-10:]
# 计算平均熵增率
rates = []
for i in range(1, len(recent_entropies)):
rate = recent_entropies[i] - recent_entropies[i-1]
rates.append(rate)
return np.mean(rates) if rates else 0.0
def force_synchronization(self) -> None:
"""强制同步"""
# 收集所有处理器状态
states = []
for processor in self.processors:
state = {
'rank': processor.rank,
'load': processor.current_load,
'queue_size': len(processor.task_queue)
}
states.append(state)
# 广播同步消息
sync_message = PhiMessage(
sender=-1, # 系统消息
receiver=-1, # 广播
data={'type': 'sync', 'states': states},
priority=100 # 最高优先级
)
# 强制所有处理器处理同步消息
for processor in self.processors:
processor.task_queue.insert(0, sync_message)
4.2 无锁同步
class PhiLockFreeSync:
"""φ-无锁同步"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.version_counters = {}
self.shared_data = {}
def read_shared_data(self, key: str, processor_id: int) -> Tuple[Any, int]:
"""无锁读取共享数据"""
version = self.version_counters.get(key, 0)
data = self.shared_data.get(key, None)
return data, version
def write_shared_data(self, key: str, value: Any, processor_id: int) -> bool:
"""无锁写入共享数据"""
# φ-版本控制
current_version = self.version_counters.get(key, 0)
new_version = current_version + 1
# 原子更新(模拟CAS操作)
if self.compare_and_swap(key, current_version, new_version, value):
return True
else:
# φ-退避策略
backoff_time = 0.001 * (self.phi ** (processor_id % 5))
time.sleep(backoff_time)
return False
def compare_and_swap(self, key: str, expected_version: int,
new_version: int, new_value: Any) -> bool:
"""比较并交换(模拟原子操作)"""
current_version = self.version_counters.get(key, 0)
if current_version == expected_version:
self.version_counters[key] = new_version
self.shared_data[key] = new_value
return True
else:
return False
def phi_barrier_sync(self, processor_id: int, num_processors: int) -> None:
"""φ-屏障同步"""
barrier_key = f"barrier_{processor_id // int(self.phi)}"
# 递增到达计数
arrived_count = self.shared_data.get(barrier_key, 0)
while not self.write_shared_data(barrier_key, arrived_count + 1, processor_id):
time.sleep(0.001) # 重试
arrived_count = self.shared_data.get(barrier_key, 0)
# 等待所有处理器到达
while self.shared_data.get(barrier_key, 0) < num_processors:
time.sleep(0.001 * self.phi) # φ-等待
5. 性能分析框架
5.1 性能监控
class PhiPerformanceMonitor:
"""φ-性能监控器"""
def __init__(self, processors: List[PhiProcessor]):
self.phi = (1 + np.sqrt(5)) / 2
self.processors = processors
self.metrics = {}
self.start_time = time.time()
def collect_metrics(self) -> Dict[str, Any]:
"""收集性能指标"""
current_time = time.time()
elapsed_time = current_time - self.start_time
metrics = {
'timestamp': current_time,
'elapsed_time': elapsed_time,
'processor_metrics': [],
'system_metrics': {}
}
# 处理器指标
total_tasks_completed = 0
total_load = 0
for processor in self.processors:
proc_metrics = {
'rank': processor.rank,
'current_load': processor.current_load,
'capacity': processor.capacity,
'utilization': processor.current_load / processor.capacity if processor.capacity > 0 else 0,
'queue_length': len(processor.task_queue),
'phi_efficiency': self.compute_phi_efficiency(processor)
}
metrics['processor_metrics'].append(proc_metrics)
total_load += processor.current_load
# 系统指标
metrics['system_metrics'] = {
'total_load': total_load,
'average_utilization': total_load / sum(p.capacity for p in self.processors),
'load_balance_index': self.compute_load_balance_index(),
'phi_speedup': self.compute_phi_speedup(),
'parallel_efficiency': self.compute_parallel_efficiency()
}
return metrics
def compute_phi_efficiency(self, processor: PhiProcessor) -> float:
"""计算φ-效率"""
if processor.capacity == 0:
return 0.0
utilization = processor.current_load / processor.capacity
phi_factor = self.phi ** (-processor.rank)
return utilization * phi_factor
def compute_load_balance_index(self) -> float:
"""计算负载均衡指数"""
utilizations = []
for processor in self.processors:
if processor.capacity > 0:
utilization = processor.current_load / processor.capacity
utilizations.append(utilization)
if not utilizations:
return 1.0
mean_util = np.mean(utilizations)
if mean_util == 0:
return 1.0
# 负载均衡指数(越接近1越均衡)
variance = np.var(utilizations)
return 1.0 / (1.0 + variance / mean_util)
def compute_phi_speedup(self) -> float:
"""计算φ-加速比"""
n = len(self.processors)
# 理论φ-加速比
theoretical_speedup = n / (1 + (n-1) / self.phi)
# 实际加速比(需要基准测试数据)
# 这里返回理论值
return theoretical_speedup
def compute_parallel_efficiency(self) -> float:
"""计算并行效率"""
speedup = self.compute_phi_speedup()
n = len(self.processors)
return speedup / n if n > 0 else 0.0
5.2 性能预测
class PhiPerformancePredictor:
"""φ-性能预测器"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.historical_data = []
def predict_execution_time(self, task_size: int, num_processors: int) -> float:
"""预测执行时间"""
# φ-性能模型
sequential_time = self.estimate_sequential_time(task_size)
# φ-并行开销
communication_overhead = self.estimate_communication_overhead(num_processors)
synchronization_overhead = self.estimate_sync_overhead(num_processors)
# φ-并行效率
phi_efficiency = self.compute_phi_parallel_efficiency(num_processors)
parallel_time = (sequential_time / (num_processors * phi_efficiency) +
communication_overhead + synchronization_overhead)
return parallel_time
def estimate_sequential_time(self, task_size: int) -> float:
"""估算顺序执行时间"""
# 基于任务大小的线性模型
base_time_per_unit = 0.001 # 1ms per unit
# φ-复杂度因子
complexity_factor = np.log(task_size) / np.log(self.phi)
return base_time_per_unit * task_size * complexity_factor
def estimate_communication_overhead(self, num_processors: int) -> float:
"""估算通信开销"""
if num_processors <= 1:
return 0.0
# φ-通信模型:O(log_φ n)
comm_complexity = np.log(num_processors) / np.log(self.phi)
base_comm_time = 0.0001 # 0.1ms base
return base_comm_time * comm_complexity
def estimate_sync_overhead(self, num_processors: int) -> float:
"""估算同步开销"""
if num_processors <= 1:
return 0.0
# φ-同步开销
sync_complexity = np.sqrt(num_processors) / self.phi
base_sync_time = 0.00005 # 0.05ms base
return base_sync_time * sync_complexity
def compute_phi_parallel_efficiency(self, num_processors: int) -> float:
"""计算φ-并行效率"""
# φ-效率模型
theoretical_efficiency = self.phi / (self.phi + (num_processors - 1) / self.phi)
# 实际效率会略低
practical_factor = 0.85 # 85%的理论效率
return theoretical_efficiency * practical_factor
def predict_optimal_processor_count(self, task_size: int) -> int:
"""预测最优处理器数量"""
best_processors = 1
best_time = self.predict_execution_time(task_size, 1)
# 测试不同处理器数量
for n in range(2, min(64, task_size)): # 最多64个处理器
predicted_time = self.predict_execution_time(task_size, n)
if predicted_time < best_time:
best_time = predicted_time
best_processors = n
else:
# 性能开始下降,停止搜索
break
return best_processors
6. 测试框架
6.1 单元测试支持
class PhiParallelTester:
"""φ-并行测试框架"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def create_test_processors(self, count: int) -> List[PhiProcessor]:
"""创建测试处理器"""
processors = []
base_capacity = 100.0
for i in range(count):
capacity = base_capacity * (self.phi ** (i // 3))
processor = PhiProcessor(rank=i, capacity=capacity)
processors.append(processor)
return processors
def create_test_tasks(self, count: int, size_range: Tuple[int, int]) -> List[PhiTask]:
"""创建测试任务"""
tasks = []
min_size, max_size = size_range
for i in range(count):
# φ-分布的任务大小
size = min_size + int((max_size - min_size) * (self.phi ** (-i % 10)))
# 随机数据
data = [random.randint(0, 1000) for _ in range(size)]
task = PhiTask(data=data, size=size)
tasks.append(task)
return tasks
def run_parallel_test(self, processors: List[PhiProcessor],
tasks: List[PhiTask]) -> Dict[str, Any]:
"""运行并行测试"""
start_time = time.time()
# 初始化系统
load_balancer = PhiLoadBalancer(processors)
work_stealing = PhiWorkStealing(processors)
monitor = PhiPerformanceMonitor(processors)
# 执行任务
work_stealing.schedule_tasks(tasks)
end_time = time.time()
execution_time = end_time - start_time
# 收集结果
metrics = monitor.collect_metrics()
return {
'execution_time': execution_time,
'metrics': metrics,
'processors_used': len(processors),
'tasks_completed': len(tasks),
'throughput': len(tasks) / execution_time if execution_time > 0 else 0
}