C13-1 φ-计算复杂性分类形式化规范
1. 基础复杂性类定义
1.1 φ-P类
class PhiPClass:
"""φ-P复杂性类"""
def __init__(self, depth: int):
self.phi = (1 + np.sqrt(5)) / 2
self.depth = depth
def time_bound(self, n: int) -> float:
"""时间复杂度界限"""
return (n ** self.depth) * (self.phi ** self.recursive_depth(n))
def recursive_depth(self, n: int) -> int:
"""输入的递归深度"""
# 基于输入大小的对数
return int(np.log(n + 1) / np.log(self.phi))
def contains(self, problem: 'Problem') -> bool:
"""判断问题是否属于此类"""
# 检查是否存在满足时间界限的算法
for algorithm in problem.get_algorithms():
if self.verify_algorithm(algorithm, problem):
return True
return False
def verify_algorithm(self, algorithm: 'Algorithm', problem: 'Problem') -> bool:
"""验证算法是否满足复杂度要求"""
# 采样测试
test_sizes = [10, 100, 1000]
for n in test_sizes:
instance = problem.generate_instance(n)
time = algorithm.measure_time(instance)
bound = self.time_bound(n)
if time > bound * 1.1: # 允许10%误差
return False
return True
1.2 φ-NP类
class PhiNPClass:
"""φ-NP复杂性类"""
def __init__(self, depth: int):
self.phi = (1 + np.sqrt(5)) / 2
self.depth = depth
self.p_class = PhiPClass(depth + int(np.log(depth) / np.log(self.phi)))
def time_bound(self, n: int) -> float:
"""非确定性时间界限"""
return (n ** self.depth) * (self.phi ** self.recursive_depth(n))
def verifier_time(self, n: int) -> float:
"""验证器时间界限"""
return n ** 2 # 多项式验证
def recursive_depth(self, n: int) -> int:
"""递归深度"""
return int(np.log(n + 1) / np.log(self.phi))
def contains(self, problem: 'Problem') -> bool:
"""判断问题是否属于此类"""
# 检查是否有多项式验证器
if not problem.has_polynomial_verifier():
return False
# 检查搜索空间
search_space = problem.search_space_size()
bound = self.phi ** (self.depth * np.log(problem.input_size))
return search_space <= bound
def collapse_to_p(self, problem: 'Problem') -> Optional['Algorithm']:
"""尝试将NP问题塌缩到P"""
depth = problem.recursive_depth()
if depth < self.critical_depth(problem.input_size):
# 可以塌缩
return self.construct_p_algorithm(problem)
else:
return None
def critical_depth(self, n: int) -> int:
"""临界深度"""
return int(np.log(n) / np.log(self.phi))
def construct_p_algorithm(self, problem: 'Problem') -> 'Algorithm':
"""构造P算法"""
# 利用φ-分解
return PhiDecompositionAlgorithm(problem)
1.3 φ-PSPACE类
class PhiPSPACEClass:
"""φ-PSPACE复杂性类"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def space_bound(self, n: int) -> float:
"""空间复杂度界限"""
return n * np.log(n) / np.log(self.phi)
def contains(self, problem: 'Problem') -> bool:
"""判断问题是否属于PSPACE_φ"""
# 检查空间需求
space = problem.space_requirement()
bound = self.space_bound(problem.input_size)
return space <= bound
def complete_problems(self) -> List['Problem']:
"""PSPACE_φ完全问题"""
return [
PhiQuantifiedBooleanFormula(),
PhiGameOfLife(),
PhiPlanningProblem()
]
2. 复杂性类层次
2.1 层次结构
class ComplexityHierarchy:
"""φ-复杂性类层次"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.classes = self.build_hierarchy()
def build_hierarchy(self) -> Dict[str, 'ComplexityClass']:
"""构建复杂性类层次"""
hierarchy = {}
# P层次
for d in range(10):
hierarchy[f'P_φ^({d})'] = PhiPClass(d)
# NP层次
for d in range(10):
hierarchy[f'NP_φ^({d})'] = PhiNPClass(d)
# 空间类
hierarchy['PSPACE_φ'] = PhiPSPACEClass()
hierarchy['L_φ'] = PhiLogSpaceClass()
# 指数类
hierarchy['EXP_φ'] = PhiEXPClass()
hierarchy['NEXP_φ'] = PhiNEXPClass()
return hierarchy
def inclusion_relations(self) -> List[Tuple[str, str]]:
"""包含关系"""
relations = []
# P层次包含
for d in range(9):
relations.append((f'P_φ^({d})', f'P_φ^({d+1})'))
# NP塌缩
for d in range(5):
log_d = int(np.log(d + 1) / np.log(self.phi))
relations.append((f'NP_φ^({d})', f'P_φ^({d + log_d})'))
# P ⊆ NP ⊆ PSPACE
relations.append(('P_φ^(1)', 'NP_φ^(1)'))
relations.append(('NP_φ^(1)', 'PSPACE_φ'))
return relations
def separation_oracle(self, class1: str, class2: str) -> Optional['Oracle']:
"""构造分离两个类的oracle"""
if self.provably_different(class1, class2):
return self.construct_separating_oracle(class1, class2)
return None
2.2 完全问题
class CompleteProblem:
"""完全问题基类"""
def __init__(self, complexity_class: str):
self.phi = (1 + np.sqrt(5)) / 2
self.complexity_class = complexity_class
def reduce_from(self, problem: 'Problem') -> 'Reduction':
"""从其他问题归约"""
pass
def is_complete(self) -> bool:
"""验证完全性"""
# 1. 属于该复杂性类
# 2. 所有该类问题都可归约到此问题
return True
class PhiSAT(CompleteProblem):
"""φ-SAT问题"""
def __init__(self):
super().__init__('NP_φ^(1)')
def encode_formula(self, variables: int, clauses: List[List[int]]) -> str:
"""编码SAT公式为φ-二进制"""
encoding = ""
for clause in clauses:
# 确保满足no-11约束
clause_encoding = self.encode_clause(clause)
encoding += clause_encoding + "0" # 分隔符
return self.normalize_no_11(encoding)
def solve(self, formula: str) -> Optional[Dict[int, bool]]:
"""求解φ-SAT"""
n = self.count_variables(formula)
depth = int(np.log(n) / np.log(self.phi))
if depth < self.critical_depth(n):
# 可以高效求解
return self.phi_decomposition_solve(formula)
else:
# 使用标准SAT求解器
return self.standard_sat_solve(formula)
def phi_decomposition_solve(self, formula: str) -> Optional[Dict[int, bool]]:
"""φ-分解求解算法"""
# 将问题分解为子问题
subproblems = self.decompose_by_phi(formula)
# 递归求解
solutions = []
for sub in subproblems:
sol = self.solve(sub)
if sol is None:
return None
solutions.append(sol)
# 合并解
return self.merge_solutions(solutions)
3. 熵增复杂性类
3.1 熵增类定义
class EntropyComplexityClass:
"""基于熵增的复杂性类"""
def __init__(self, entropy_rate: float):
self.phi = (1 + np.sqrt(5)) / 2
self.entropy_rate = entropy_rate
def contains(self, algorithm: 'Algorithm') -> bool:
"""判断算法是否属于此熵增类"""
# 测量算法的熵增率
test_inputs = self.generate_test_inputs()
total_entropy_increase = 0
for input_data in test_inputs:
initial_entropy = self.compute_entropy(input_data)
# 运行算法
trace = algorithm.run_with_trace(input_data)
final_entropy = self.compute_entropy(trace.final_state)
entropy_increase = final_entropy - initial_entropy
total_entropy_increase += entropy_increase / len(input_data)
avg_rate = total_entropy_increase / len(test_inputs)
return avg_rate >= self.entropy_rate
def compute_entropy(self, state: Any) -> float:
"""计算状态的熵"""
if isinstance(state, str):
# 二进制串的熵
ones = state.count('1')
zeros = state.count('0')
total = ones + zeros
if ones == 0 or zeros == 0:
return 0.0
p1 = ones / total
p0 = zeros / total
return -(p1 * np.log2(p1) + p0 * np.log2(p0)) * total
else:
# 其他类型的熵计算
return 0.0
def optimize_by_entropy(self, algorithm: 'Algorithm') -> 'Algorithm':
"""通过熵增优化算法"""
# 分析算法的熵增瓶颈
bottlenecks = self.analyze_entropy_bottlenecks(algorithm)
# 优化低熵增部分
optimized = algorithm.copy()
for bottleneck in bottlenecks:
optimized = self.optimize_component(optimized, bottleneck)
return optimized
3.2 熵增层次
class EntropyHierarchy:
"""熵增复杂性层次"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.levels = self.build_entropy_hierarchy()
def build_entropy_hierarchy(self) -> List[EntropyComplexityClass]:
"""构建熵增层次"""
levels = []
# 线性熵增
levels.append(EntropyComplexityClass(entropy_rate=1.0))
# φ-熵增
levels.append(EntropyComplexityClass(entropy_rate=self.phi))
# 平方熵增
levels.append(EntropyComplexityClass(entropy_rate=self.phi ** 2))
# 指数熵增
for k in range(1, 5):
rate = self.phi ** k
levels.append(EntropyComplexityClass(entropy_rate=rate))
return levels
def classify_algorithm(self, algorithm: 'Algorithm') -> int:
"""分类算法的熵增等级"""
for i, level in enumerate(self.levels):
if not level.contains(algorithm):
return i - 1 if i > 0 else 0
return len(self.levels) - 1
4. 相变现象
4.1 复杂度相变
class ComplexityPhaseTransition:
"""复杂度相变"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.critical_ratio = 1 / self.phi # ≈ 0.618
def detect_phase_transition(self, problem_family: 'ProblemFamily',
parameter: str) -> float:
"""检测相变点"""
# 二分搜索相变点
low, high = 0.0, 1.0
epsilon = 0.001
while high - low > epsilon:
mid = (low + high) / 2
# 生成该参数下的问题实例
instances = problem_family.generate_instances(
parameter_value=mid,
count=100
)
# 测量复杂度
avg_complexity = self.measure_average_complexity(instances)
if avg_complexity < self.polynomial_threshold():
low = mid
else:
high = mid
return (low + high) / 2
def measure_average_complexity(self, instances: List['Instance']) -> float:
"""测量平均复杂度"""
total_time = 0
for instance in instances:
solver = self.get_solver(instance)
start_time = time.time()
solver.solve(instance)
elapsed = time.time() - start_time
total_time += elapsed
return total_time / len(instances)
def analyze_sat_threshold(self, n: int) -> float:
"""分析SAT相变阈值"""
# 理论预测:m/n ≈ φ² - 1/φ
theoretical = self.phi ** 2 - 1 / self.phi # ≈ 2.236
# 实验验证
experimental = self.experimental_sat_threshold(n)
return {
'theoretical': theoretical,
'experimental': experimental,
'error': abs(theoretical - experimental)
}
4.2 可满足性阈值
class SatisfiabilityThreshold:
"""可满足性阈值分析"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def compute_threshold(self, formula_type: str) -> float:
"""计算不同类型公式的阈值"""
if formula_type == "3-SAT":
return self.phi ** 2 - 1 / self.phi # ≈ 2.236
elif formula_type == "k-SAT":
k = self.extract_k(formula_type)
return (2 ** k) / (self.phi ** (k - 2))
elif formula_type == "φ-SAT":
return self.phi # 特殊的φ-SAT阈值
def probability_satisfiable(self, n: int, m: int, formula_type: str) -> float:
"""计算可满足概率"""
ratio = m / n
threshold = self.compute_threshold(formula_type)
if ratio < threshold * 0.9:
return 0.99 # 几乎必然可满足
elif ratio > threshold * 1.1:
return 0.01 # 几乎必然不可满足
else:
# 相变区域,使用S型函数
x = (ratio - threshold) / (threshold * 0.1)
return 1 / (1 + np.exp(10 * x))
5. 近似复杂性
5.1 φ-APX类
class PhiAPXClass:
"""φ-近似类"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def contains(self, problem: 'OptimizationProblem') -> bool:
"""判断问题是否属于φ-APX"""
# 检查是否存在φ-近似算法
algorithm = problem.get_approximation_algorithm()
if algorithm is None:
return False
# 验证近似比
test_instances = problem.generate_test_instances(100)
for instance in test_instances:
approx_solution = algorithm.solve(instance)
optimal_solution = problem.get_optimal_solution(instance)
ratio = approx_solution.value / optimal_solution.value
if ratio < 1 / self.phi:
return False
return True
def phi_approximation_algorithm(self, problem: 'OptimizationProblem') -> 'Algorithm':
"""构造φ-近似算法"""
class PhiApproximation:
def __init__(self, problem):
self.problem = problem
self.phi = (1 + np.sqrt(5)) / 2
def solve(self, instance):
# φ-贪心策略
solution = self.phi_greedy(instance)
# 局部改进
solution = self.local_improvement(solution)
return solution
def phi_greedy(self, instance):
# 每步选择φ-最优的局部决策
current = instance.initial_state()
while not instance.is_complete(current):
choices = instance.get_choices(current)
# 评估每个选择
best_choice = None
best_value = -float('inf')
for choice in choices:
value = self.evaluate_choice(current, choice)
if value > best_value:
best_value = value
best_choice = choice
current = instance.apply_choice(current, best_choice)
return current
return PhiApproximation(problem)
5.2 不可近似性
class InapproximabilityResult:
"""不可近似性结果"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def prove_hardness(self, problem: 'Problem', factor: float) -> 'Proof':
"""证明不可近似到给定因子"""
if factor >= 1 / self.phi:
# 可能可以φ-近似
return None
# 构造归约
reduction = self.construct_gap_reduction(problem, factor)
# 从已知困难问题归约
if self.reduces_from_hard_problem(reduction):
return Proof(
statement=f"{problem} cannot be approximated within {factor}",
technique="gap-preserving reduction",
assumption="P ≠ NP"
)
return None
def phi_unique_games_conjecture(self) -> 'Conjecture':
"""φ-唯一博弈猜想"""
return Conjecture(
statement="For every ε > 0, it is NP-hard to approximate "
f"φ-UniqueGames within {1/self.phi - ε}",
implications=[
"Many problems have φ-approximation threshold",
"φ is fundamental approximation barrier"
]
)
6. 算法分类器
6.1 自动分类
class AlgorithmClassifier:
"""算法复杂性自动分类"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.hierarchy = ComplexityHierarchy()
def classify(self, algorithm: 'Algorithm') -> str:
"""分类算法的复杂性"""
# 运行基准测试
profile = self.profile_algorithm(algorithm)
# 分析时间复杂度
time_class = self.analyze_time_complexity(profile)
# 分析空间复杂度
space_class = self.analyze_space_complexity(profile)
# 分析熵增特性
entropy_class = self.analyze_entropy_behavior(profile)
# 综合判断
return self.synthesize_classification(time_class, space_class, entropy_class)
def profile_algorithm(self, algorithm: 'Algorithm') -> 'Profile':
"""分析算法性能"""
profile = Profile()
# 不同规模的测试
test_sizes = [10, 20, 50, 100, 200, 500, 1000]
for size in test_sizes:
# 生成测试输入
inputs = self.generate_inputs(size, count=10)
times = []
spaces = []
entropies = []
for input_data in inputs:
# 运行并测量
start_time = time.time()
start_memory = self.get_memory_usage()
trace = algorithm.run_with_trace(input_data)
elapsed = time.time() - start_time
memory = self.get_memory_usage() - start_memory
entropy_increase = trace.entropy_increase()
times.append(elapsed)
spaces.append(memory)
entropies.append(entropy_increase)
profile.add_measurement(size, {
'time': np.mean(times),
'space': np.mean(spaces),
'entropy': np.mean(entropies)
})
return profile
def analyze_time_complexity(self, profile: 'Profile') -> str:
"""分析时间复杂度"""
# 拟合复杂度函数
sizes = profile.get_sizes()
times = profile.get_times()
# 尝试不同的复杂度模型
models = {
'O(n)': lambda n: n,
'O(n log n)': lambda n: n * np.log(n),
'O(n²)': lambda n: n ** 2,
'O(n³)': lambda n: n ** 3,
f'O(φⁿ)': lambda n: self.phi ** n,
f'O(n^log_φ(n))': lambda n: n ** (np.log(n) / np.log(self.phi))
}
best_fit = None
best_error = float('inf')
for name, model in models.items():
error = self.fit_error(sizes, times, model)
if error < best_error:
best_error = error
best_fit = name
return best_fit
7. 验证函数
7.1 复杂性类测试
def test_complexity_classification() -> Dict[str, bool]:
"""测试复杂性分类"""
results = {}
# 测试P_φ层次
for d in range(5):
p_class = PhiPClass(d)
# 创建一个d次多项式时间算法
algorithm = PolynomialTimeAlgorithm(degree=d)
problem = algorithm.get_problem()
results[f'P_φ^({d})_contains'] = p_class.contains(problem)
# 测试NP_φ塌缩
for d in range(3):
np_class = PhiNPClass(d)
sat_problem = PhiSAT()
sat_problem.set_depth(d)
p_algorithm = np_class.collapse_to_p(sat_problem)
results[f'NP_φ^({d})_collapse'] = p_algorithm is not None
# 测试相变
transition = ComplexityPhaseTransition()
sat_threshold = transition.analyze_sat_threshold(100)
results['phase_transition'] = abs(sat_threshold['error']) < 0.1
return results
7.2 算法验证
def verify_algorithm_complexity(algorithm: 'Algorithm',
expected_class: str) -> bool:
"""验证算法的复杂性类"""
classifier = AlgorithmClassifier()
actual_class = classifier.classify(algorithm)
return actual_class == expected_class
8. 关键常数
# 基础常数
PHI = (1 + np.sqrt(5)) / 2 # 黄金分割率
# 复杂性参数
CRITICAL_DEPTH_FACTOR = 1.0 # 临界深度系数
PHASE_TRANSITION_RATIO = 1 / PHI # 相变比率 ≈ 0.618
SAT_THRESHOLD = PHI ** 2 - 1 / PHI # SAT阈值 ≈ 2.236
# 近似因子
APPROXIMATION_RATIO = 1 / PHI # φ-近似比 ≈ 0.618
INAPPROXIMABILITY_GAP = PHI - 1 # 不可近似间隙 ≈ 0.618
# 熵增率
LINEAR_ENTROPY_RATE = 1.0
PHI_ENTROPY_RATE = PHI
QUADRATIC_ENTROPY_RATE = PHI ** 2
# 算法参数
GREEDY_SELECTION_RATIO = PHI # 贪心选择比率
DECOMPOSITION_RATIO = PHI # 分解比率
LOCAL_SEARCH_RADIUS = int(PHI ** 3) # 局部搜索半径
9. 错误处理
class ComplexityError(Exception):
"""复杂性错误基类"""
class ClassificationError(ComplexityError):
"""分类错误"""
class ReductionError(ComplexityError):
"""归约错误"""
class ApproximationError(ComplexityError):
"""近似错误"""
class PhaseTransitionError(ComplexityError):
"""相变检测错误"""