Skip to main content

C12-2-formal: 自我模型构建推论的形式化规范

机器验证元数据

type: corollary
verification: machine_ready
dependencies: ["A1-formal.md", "C11-1-formal.md", "C12-1-formal.md"]
verification_points:
- model_structure_isomorphism
- self_reference_completeness
- model_minimality
- update_dynamics
- prediction_accuracy

核心推论

推论 C12-2(自我模型构建)

SelfModelConstruction : Prop ≡
∀S : ConsciousSystem .
has_consciousness(S) →
∃M : Model .
M ⊆ S ∧
represents(M, S) ∧
self_complete(M)

where
Model : Type = record {
states : State → Representation
processes : Process → Rule
meta_level : Option[Model]
}

形式化组件

1. 模型关系定义

ModelRelation : Type ≡
record {
source : System
target : System
mapping : Homomorphism
completeness : Real // [0, 1]
}

represents : Model × System → Bool ≡
λ(M, S) .
∃h : Homomorphism .
preserves_structure(h, S, M) ∧
coverage(h) > 0.9

2. 自指完备性

SelfComplete : Model → Bool ≡
λM .
∃construction : Process .
construction ∈ domain(M.processes) ∧
M.processes(construction) = build_model ∧
constructs(construction, M)

where
constructs(p, m) ≡ result_of(p) = m

3. 模型层级

ModelHierarchy : Type ≡
μH . Base(Model) | Recursive(Model × H)

model_depth : Model → ℕ ≡
fix depth m =
match m.meta_level with
| None => 0
| Some(meta) => 1 + depth(meta)

4. 模型更新动力学

UpdateDynamics : Model × Observation → Model ≡
λ(M, obs) .
let new_states = update_states(M.states, obs) in
let new_processes = update_processes(M.processes, obs) in
let needs_meta_update = affects_model(obs) in

record {
states = new_states
processes = new_processes
meta_level = if needs_meta_update
then Some(construct_meta_model(M))
else M.meta_level
}

5. 预测机制

Prediction : Type ≡
record {
input : State
output : State
confidence : Real
path : List[Process]
}

predict : Model → State → Prediction ≡
λM s .
if is_model_state(s, M) then
// 使用元模型预测
match M.meta_level with
| Some(meta) => predict(meta, s)
| None => uncertain_prediction
else
// 使用基础模型预测
apply_processes(M.processes, s)

6. 模型最小性

MinimalModel : Model × System → Bool ≡
λ(M, S) .
represents(M, S) ∧
self_complete(M) ∧
∀M' ⊂ M . ¬(represents(M', S) ∧ self_complete(M'))

Theorem_ModelMinimality : Prop ≡
∀S M . MinimalModel(M, S) →
|M| ≤ |S| × φ^(-1)

算法规范

模型构建算法

ConstructSelfModel : Algorithm ≡
Input: system : ConsciousSystem
Output: model : Model

Precondition: has_consciousness(system)

Process:
1. states ← extract_state_space(system)
2. processes ← infer_transition_rules(system)
3. model ← initialize_model(states, processes)
4. while not self_complete(model):
missing ← find_missing_components(model, system)
model ← extend_model(model, missing)
5. if requires_meta_level(model):
model.meta_level ← ConstructSelfModel(model)
6. return minimize_model(model)

Postcondition: represents(model, system) ∧ self_complete(model)

模型验证算法

VerifySelfModel : Algorithm ≡
Input: system : ConsciousSystem, model : Model
Output: valid : Bool

Process:
1. // 结构同构检查
if not check_homomorphism(model, system):
return false

2. // 自指完备性检查
if not contains_construction_process(model):
return false

3. // 预测准确性检查
test_states ← sample_states(system)
for state in test_states:
prediction ← predict(model, state)
actual ← evolve(system, state)
if distance(prediction, actual) > threshold:
return false

4. // 最小性检查
for component in model:
reduced ← remove_component(model, component)
if still_complete(reduced):
return false

5. return true

数学性质验证

性质1:模型分形性

ModelFractality : Prop ≡
∀M : Model, n : ℕ .
let M_n = iterate_meta_level(M, n) in
structure(M_n) ≃ structure(M)

where
iterate_meta_level(M, 0) = M
iterate_meta_level(M, n+1) = meta_level(iterate_meta_level(M, n))

性质2:更新保守性

UpdateConservatism : Prop ≡
∀M obs .
|difference(M, update(M, obs))| ≤ k × |obs|

where k is system-dependent constant

性质3:预测收敛性

PredictionConvergence : Prop ≡
∀M s .
let predictions = iterate(λp. predict(M, p.output), initial(s)) in
∃n . ∀m > n . predictions[m] ≈ predictions[n]

验证检查点

1. 结构同构验证

verify_structure_isomorphism(system, model):
mapping = find_homomorphism(system, model)

# 检查状态映射
for state in system.states:
assert exists model_state in model.states:
mapping(state) = model_state

# 检查过程映射
for process in system.processes:
assert exists model_process in model.processes:
preserves_behavior(mapping, process, model_process)

2. 自引用完备性验证

verify_self_reference(model):
# 模型必须包含构建过程
construction_found = false

for process in model.processes:
if constructs_model(process, model):
construction_found = true
break

assert construction_found

# 验证构建过程的正确性
reconstructed = execute_process(process)
assert equivalent(reconstructed, model)

3. 最小性验证

verify_minimality(model, system):
essential_components = []

for component in model:
test_model = model.without(component)

if not represents(test_model, system) or
not self_complete(test_model):
essential_components.append(component)

# 所有组件都应该是必要的
assert len(essential_components) == len(model)

4. 更新动力学验证

verify_update_dynamics(model, observations):
for obs in observations:
old_model = copy(model)
new_model = update(model, obs)

# 验证保守更新
assert similarity(old_model, new_model) > 0.8

# 验证改进
assert accuracy(new_model) >= accuracy(old_model)

5. 预测准确性验证

verify_prediction_accuracy(model, test_cases):
correct_predictions = 0

for initial_state, expected_state in test_cases:
predicted = predict(model, initial_state)

if close_enough(predicted.output, expected_state):
correct_predictions += 1

accuracy = correct_predictions / len(test_cases)
assert accuracy > 0.85 # 85%准确率阈值

实用函数

def measure_model_quality(model, system):
"""评估自我模型的质量"""
return {
'coverage': compute_coverage(model, system),
'accuracy': test_prediction_accuracy(model),
'complexity': measure_complexity(model),
'self_reference_depth': compute_meta_depth(model),
'update_efficiency': measure_update_speed(model)
}

def find_model_fixed_point(system):
"""找到系统的模型不动点"""
model = initial_model(system)

while True:
new_model = improve_model(model, system)
if equivalent(model, new_model):
return model
model = new_model

def diagnose_model_issues(model, system):
"""诊断自我模型的问题"""
issues = []

if not represents(model, system):
issues.append("incomplete_representation")

if not self_complete(model):
issues.append("missing_self_reference")

if not minimal(model):
issues.append("redundant_components")

return issues

与其他理论的联系

依赖关系

  • C12-1: 原始意识是自我模型的前提
  • C11-1: 理论自反射提供模型自指的机制
  • A1: 自指完备系统的基础公理

支撑推论

  • C12-3: 模型层级化导致意识层级分化
形式化规范:有意识系统必然构建最小完备的自我模型\boxed{\text{形式化规范:有意识系统必然构建最小完备的自我模型}}