C11-2 理论不完备性形式化规范
依赖组件
from typing import Set, Dict, List, Tuple, Optional, Callable
from dataclasses import dataclass, field
from abc import ABC, abstractmethod
from C11_1 import Theory, Formula, Proof, ReflectionOperator
from C10_1 import GödelEncoder, FormalSystem
from base import No11Number
核心数据结构
1. 可证性谓词
@dataclass
class ProvabilityPredicate:
"""可证性谓词 Prov_T(x)"""
theory: Theory
symbol: Symbol # 表示可证性的关系符号
def apply(self, formula_code: No11Number) -> Formula:
"""构造 Prov_T(⌜φ⌝)"""
code_term = ConstantTerm(f"F_{formula_code.value}")
return AtomicFormula(self.symbol, (code_term,))
def is_provable(self, formula: Formula) -> bool:
"""检查公式是否可证明"""
proof = self.theory.prove(formula)
return proof is not None
def verify_reflection_principle(self) -> bool:
"""验证反射原理:T ⊢ φ ⇒ T ⊢ Prov_T(⌜φ⌝)"""
for theorem in self.theory.theorems:
code = self.theory.encoder.encode_formula(theorem)
prov_formula = self.apply(code)
if prov_formula not in self.theory.theorems:
return False
return True
2. 对角化机制
@dataclass
class DiagonalizationOperator:
"""对角化算子"""
encoder: GödelEncoder
def diagonalize(self, formula_schema: Callable[[Term], Formula]) -> Formula:
"""
对角化:给定 φ(x),返回 φ(⌜φ(x)⌝)
"""
# 创建表示formula_schema的项
schema_code = self._encode_schema(formula_schema)
schema_term = ConstantTerm(f"S_{schema_code.value}")
# 应用到自身编码
diagonal = formula_schema(schema_term)
return diagonal
def _encode_schema(self, schema: Callable) -> No11Number:
"""编码公式模式"""
# 使用函数的字符串表示作为编码基础
schema_str = str(schema.__code__.co_code)
code_value = sum(ord(c) for c in schema_str) % 10000
return No11Number(code_value)
def construct_fixed_point(self, operator: Callable[[Formula], Formula]) -> Formula:
"""
构造不动点:找到 φ 使得 φ ↔ F(φ)
"""
def schema(x: Term) -> Formula:
# 构造 F(decode(x))
decoded = self._decode_term(x)
return operator(decoded)
return self.diagonalize(schema)
def _decode_term(self, term: Term) -> Formula:
"""解码项为公式(示意性实现)"""
# 这里需要完整的解码机制
if isinstance(term, ConstantTerm):
# 从编码恢复公式
return AtomicFormula(
Symbol("Decoded", SymbolType.RELATION, 0),
()
)
return AtomicFormula(Symbol("Unknown", SymbolType.RELATION, 0), ())
3. Gödel句
@dataclass
class GodelSentence:
"""Gödel句 G ↔ ¬Prov_T(⌜G⌝)"""
theory: Theory
formula: Formula
encoding: No11Number
@classmethod
def construct(cls, theory: Theory) -> 'GodelSentence':
"""构造理论的Gödel句"""
prov_pred = ProvabilityPredicate(
theory,
theory.language.symbols.get("Prov",
Symbol("Prov", SymbolType.RELATION, 1))
)
diag_op = DiagonalizationOperator(theory.encoder)
# G(x) := ¬Prov(x)
def G_schema(x: Term) -> Formula:
prov_formula = AtomicFormula(prov_pred.symbol, (x,))
return NotFormula(prov_formula)
# 对角化得到 G ↔ ¬Prov(⌜G⌝)
godel_formula = diag_op.diagonalize(G_schema)
godel_encoding = theory.encoder.encode_formula(godel_formula)
return cls(theory, godel_formula, godel_encoding)
def verify_self_reference(self) -> bool:
"""验证自引用性质"""
# G应该等价于¬Prov(⌜G⌝)
prov_g = AtomicFormula(
self.theory.language.symbols["Prov"],
(ConstantTerm(f"F_{self.encoding.value}"),)
)
neg_prov_g = NotFormula(prov_g)
# 检查等价性(这里简化为结构相等)
return self._structurally_equivalent(self.formula, neg_prov_g)
def _structurally_equivalent(self, f1: Formula, f2: Formula) -> bool:
"""检查两个公式是否结构等价"""
# 完整实现需要考虑逻辑等价
return type(f1) == type(f2)
4. 不完备性分析器
@dataclass
class IncompletenessAnalyzer:
"""不完备性分析器"""
theory: Theory
def find_undecidable_sentences(self, max_search: int = 100) -> List[Formula]:
"""寻找不可判定的语句"""
undecidable = []
# 生成候选公式
for formula in self._generate_formulas(max_search):
if self.is_undecidable(formula):
undecidable.append(formula)
return undecidable
def is_undecidable(self, formula: Formula) -> bool:
"""判断公式是否不可判定"""
# 尝试证明公式
proof_pos = self.theory.prove(formula)
# 尝试证明否定
neg_formula = NotFormula(formula)
proof_neg = self.theory.prove(neg_formula)
# 都无法证明则不可判定
return proof_pos is None and proof_neg is None
def verify_first_incompleteness(self) -> bool:
"""验证第一不完备性定理"""
godel = GodelSentence.construct(self.theory)
# G应该不可证明
if self.theory.prove(godel.formula) is not None:
return False
# ¬G也应该不可证明(如果理论一致)
neg_godel = NotFormula(godel.formula)
if self.theory.prove(neg_godel) is not None:
return False
return True
def verify_second_incompleteness(self) -> bool:
"""验证第二不完备性定理"""
# 构造一致性陈述 Con(T) := ¬Prov_T(⊥)
bottom = AtomicFormula(
Symbol("⊥", SymbolType.RELATION, 0),
()
)
bottom_code = self.theory.encoder.encode_formula(bottom)
prov_bottom = AtomicFormula(
self.theory.language.symbols["Prov"],
(ConstantTerm(f"F_{bottom_code.value}"),)
)
consistency = NotFormula(prov_bottom)
# 一致性陈述应该不可证明
consistency_proof = self.theory.prove(consistency)
return consistency_proof is None
def _generate_formulas(self, count: int) -> List[Formula]:
"""生成测试用公式"""
formulas = []
# 基本原子公式
for i in range(count // 4):
pred = Symbol(f"P{i}", SymbolType.RELATION, 0)
formulas.append(AtomicFormula(pred, ()))
# 否定
for i in range(count // 4):
base = formulas[i] if i < len(formulas) else AtomicFormula(
Symbol("Q", SymbolType.RELATION, 0), ()
)
formulas.append(NotFormula(base))
# 合取
for i in range(count // 4):
left = formulas[i % len(formulas)] if formulas else AtomicFormula(
Symbol("R", SymbolType.RELATION, 0), ()
)
right = formulas[(i + 1) % len(formulas)] if formulas else AtomicFormula(
Symbol("S", SymbolType.RELATION, 0), ()
)
formulas.append(AndFormula(left, right))
# 量词
for i in range(count // 4):
body = formulas[i % len(formulas)] if formulas else AtomicFormula(
Symbol("T", SymbolType.RELATION, 1),
(VariableTerm("x"),)
)
formulas.append(ForAllFormula("x", body))
return formulas[:count]
5. 熵计算器
@dataclass
class EntropyCalculator:
"""理论熵计算器"""
def compute_entropy(self, theory: Theory, sample_size: int = 1000) -> float:
"""
计算理论的熵(不可判定陈述的比例)
"""
analyzer = IncompletenessAnalyzer(theory)
undecidable_count = 0
# 采样公式空间
formulas = analyzer._generate_formulas(sample_size)
for formula in formulas:
if analyzer.is_undecidable(formula):
undecidable_count += 1
# 熵定义为不可判定陈述的比例
entropy = undecidable_count / sample_size
return entropy
def compute_entropy_growth(self, theory_tower: List[Theory]) -> List[float]:
"""计算理论塔的熵增长"""
entropies = []
for theory in theory_tower:
entropy = self.compute_entropy(theory)
entropies.append(entropy)
return entropies
def verify_entropy_increase(self, t1: Theory, t2: Theory) -> bool:
"""验证熵增原理"""
entropy1 = self.compute_entropy(t1)
entropy2 = self.compute_entropy(t2)
# 反射后的理论应该有更高的熵
return entropy2 > entropy1
6. 完备性检测器
@dataclass
class CompletenessChecker:
"""完备性检测器"""
theory: Theory
def is_complete(self) -> bool:
"""检测理论是否完备"""
# 采样一些公式
analyzer = IncompletenessAnalyzer(self.theory)
formulas = analyzer._generate_formulas(100)
for formula in formulas:
# 检查是否 T ⊢ φ 或 T ⊢ ¬φ
proof_pos = self.theory.prove(formula)
proof_neg = self.theory.prove(NotFormula(formula))
if proof_pos is None and proof_neg is None:
# 找到不可判定的公式,理论不完备
return False
# 注意:这只是近似检测
return True
def is_consistent(self) -> bool:
"""检测理论是否一致"""
# 检查是否能证明⊥
bottom = AtomicFormula(
Symbol("⊥", SymbolType.RELATION, 0),
()
)
proof = self.theory.prove(bottom)
return proof is None
def verify_incompleteness_dilemma(self) -> bool:
"""验证完备性与一致性不可兼得"""
is_complete = self.is_complete()
is_consistent = self.is_consistent()
# 不应该既完备又一致
return not (is_complete and is_consistent)
7. 不完备性定理验证器
class IncompletenessTheoremVerifier:
"""不完备性定理的完整验证"""
def __init__(self, theory: Theory):
self.theory = theory
self.analyzer = IncompletenessAnalyzer(theory)
self.entropy_calc = EntropyCalculator()
self.completeness_checker = CompletenessChecker(theory)
def verify_all_theorems(self) -> Dict[str, bool]:
"""验证所有不完备性定理"""
results = {}
# 第一不完备性
results["first_incompleteness"] = self.analyzer.verify_first_incompleteness()
# 第二不完备性
results["second_incompleteness"] = self.analyzer.verify_second_incompleteness()
# 熵增原理
reflected = ReflectionOperator().reflect(self.theory)
results["entropy_increase"] = self.entropy_calc.verify_entropy_increase(
self.theory, reflected
)
# 完备性困境
results["completeness_dilemma"] = self.completeness_checker.verify_incompleteness_dilemma()
return results
算法规范
1. Gödel句构造算法
def construct_godel_sentence(theory: Theory) -> GodelSentence:
"""
构造理论的Gödel句
步骤:
1. 定义可证性谓词
2. 构造否定可证性的公式模式
3. 应用对角化
4. 验证自引用性质
"""
return GodelSentence.construct(theory)
2. 不可判定性检测算法
def detect_undecidability(theory: Theory, formula: Formula) -> bool:
"""
检测公式的不可判定性
算法:
1. 尝试证明公式
2. 尝试证明公式的否定
3. 如果都失败,则不可判定
"""
analyzer = IncompletenessAnalyzer(theory)
return analyzer.is_undecidable(formula)
3. 熵计算算法
def calculate_theory_entropy(theory: Theory, sample_size: int = 1000) -> float:
"""
计算理论的熵
算法:
1. 生成公式样本
2. 统计不可判定公式
3. 计算比例作为熵
"""
calculator = EntropyCalculator()
return calculator.compute_entropy(theory, sample_size)
正确性要求
- Gödel句必须真正自引用
- 不可判定性检测必须完整
- 熵计算必须反映真实复杂度
- 所有编码保持No-11约束
- 对角化过程必须正确
测试规范
每个组件都需要完整的单元测试,验证:
- Gödel句的构造和性质
- 不完备性定理的成立
- 熵的严格递增
- 完备性与一致性的不可兼得
- No-11约束的保持