C11-1 理论自反射形式化规范
模块依赖
from typing import Set, Dict, List, Tuple, Optional, Callable, Any
from dataclasses import dataclass, field
from abc import ABC, abstractmethod
from enum import Enum
import hashlib
from no11_number_system import No11Number
from test_C10_1 import (
FormalSystem, Formula, Symbol, SymbolType,
VariableTerm, ConstantTerm, AtomicFormula,
Axiom, Proof, ProofStep, Model, Interpretation,
GödelEncoder
)
from test_C10_2 import (
CategoryObject, Morphism, IdentityMorphism, ComposedMorphism,
Category, Functor, NaturalTransformation,
FormalSystemCategory, CollapseFunctor
)
核心数据结构
理论表示
@dataclass
class Theory:
"""完整理论的表示"""
name: str
language: FormalSystem
axioms: Set[Formula]
inference_rules: Set['InferenceRule']
theorems: Set[Formula] = field(default_factory=set)
proofs: Dict[Formula, Proof] = field(default_factory=dict)
def encode(self) -> No11Number:
"""理论的No-11编码"""
encoder = GödelEncoder(self.language)
# 编码语言、公理、规则
lang_code = self.language.encode_self()
axiom_codes = [encoder.encode_formula(ax) for ax in self.axioms]
rule_codes = [rule.encode() for rule in self.inference_rules]
# 组合编码
combined = lang_code.value
for code in axiom_codes + rule_codes:
combined = (combined * 100 + code.value) % 1000000
return No11Number(combined)
def add_axiom(self, axiom: Formula):
"""添加公理"""
self.axioms.add(axiom)
def add_theorem(self, theorem: Formula, proof: Proof):
"""添加定理及其证明"""
self.theorems.add(theorem)
self.proofs[theorem] = proof
def includes(self, other: 'Theory') -> bool:
"""检查是否包含另一理论"""
return (self.axioms >= other.axioms and
self.inference_rules >= other.inference_rules)
@dataclass
class InferenceRule:
"""推理规则"""
name: str
premises: List[Formula] # 模式
conclusion: Formula # 模式
def encode(self) -> No11Number:
"""规则的No-11编码"""
name_hash = sum(ord(c) for c in self.name) % 1000
return No11Number(name_hash)
def apply(self, formulas: List[Formula]) -> Optional[Formula]:
"""应用规则到具体公式"""
# 模式匹配和替换
pass
反射机制
class ReflectionError(Exception):
"""反射错误基类"""
pass
@dataclass
class TheoryEncoding:
"""理论在其内部的编码表示"""
theory: Theory
encoding_formula: Formula # 表示编码的公式
def verify_correctness(self) -> bool:
"""验证编码的正确性"""
# 检查encoding_formula确实编码了theory
return True
class ReflectionOperator:
"""反射操作符"""
def __init__(self, max_depth: int = 10):
self.max_depth = max_depth
self.encoder = None # 将根据具体理论设置
def reflect(self, theory: Theory) -> Theory:
"""计算理论的反射"""
# 创建新理论
reflected = Theory(
name=f"Reflect({theory.name})",
language=self._extend_language(theory.language),
axioms=theory.axioms.copy(),
inference_rules=theory.inference_rules.copy()
)
# 添加原理论的所有内容
for theorem in theory.theorems:
reflected.theorems.add(theorem)
# 添加反射公理
self._add_reflection_axioms(theory, reflected)
# 添加证明反射
self._add_proof_reflection(theory, reflected)
return reflected
def _extend_language(self, language: FormalSystem) -> FormalSystem:
"""扩展语言以支持反射"""
extended = FormalSystem(f"{language.name}_extended")
# 复制原有符号
for symbol in language.symbols.values():
extended.add_symbol(symbol)
# 添加反射符号
extended.add_symbol(Symbol("Theory", SymbolType.PREDICATE, 1))
extended.add_symbol(Symbol("Proves", SymbolType.PREDICATE, 2))
extended.add_symbol(Symbol("Encode", SymbolType.FUNCTION, 1))
return extended
def _add_reflection_axioms(self, original: Theory, reflected: Theory):
"""添加反射公理"""
# 编码器
self.encoder = GödelEncoder(reflected.language)
# 对每个原公理添加反射
for axiom in original.axioms:
# 构造 "axiom ∈ theory" 的公式
axiom_code = self.encoder.encode_formula(axiom)
theory_code = original.encode()
# 创建反射公式
reflection = self._create_membership_formula(
axiom_code, theory_code, reflected.language
)
reflected.add_axiom(reflection)
def _add_proof_reflection(self, original: Theory, reflected: Theory):
"""添加证明的反射"""
for theorem, proof in original.proofs.items():
# 构造 "exists proof of theorem in theory"
theorem_code = self.encoder.encode_formula(theorem)
proof_code = self._encode_proof(proof)
# 创建存在性公式
proof_exists = self._create_proof_exists_formula(
theorem_code, proof_code, reflected.language
)
# 添加为定理(需要构造证明)
meta_proof = self._construct_meta_proof(proof_exists)
reflected.add_theorem(proof_exists, meta_proof)
def _create_membership_formula(self, element_code: No11Number,
set_code: No11Number,
language: FormalSystem) -> Formula:
"""创建成员关系公式"""
# element ∈ set 的形式化
element_term = ConstantTerm(str(element_code.value))
set_term = ConstantTerm(str(set_code.value))
theory_pred = language.symbols["Theory"]
return AtomicFormula(
predicate=theory_pred,
terms=[element_term]
)
def _create_proof_exists_formula(self, theorem_code: No11Number,
proof_code: No11Number,
language: FormalSystem) -> Formula:
"""创建证明存在性公式"""
# ∃p: Proves(p, theorem)
proves_pred = language.symbols["Proves"]
theorem_term = ConstantTerm(str(theorem_code.value))
proof_term = ConstantTerm(str(proof_code.value))
return AtomicFormula(
predicate=proves_pred,
terms=[proof_term, theorem_term]
)
def _encode_proof(self, proof: Proof) -> No11Number:
"""编码证明"""
# 简化实现
proof_hash = hash(tuple(step.formula for step in proof.steps))
return No11Number(abs(proof_hash) % 100000)
def _construct_meta_proof(self, formula: Formula) -> Proof:
"""构造元证明"""
# 简化实现
return Proof([
ProofStep(formula, "reflection", [])
])
理论塔构造
@dataclass
class TheoryTower:
"""理论塔的表示"""
base: Theory
levels: List[Theory] = field(default_factory=list)
reflection_operator: ReflectionOperator = field(default_factory=ReflectionOperator)
def __post_init__(self):
if not self.levels:
self.levels = [self.base]
def build_to_level(self, n: int):
"""构建到第n层"""
while len(self.levels) <= n:
current = self.levels[-1]
next_level = self.reflection_operator.reflect(current)
# 检查是否达到不动点
if self._is_fixpoint(current, next_level):
print(f"Reached fixpoint at level {len(self.levels)-1}")
break
self.levels.append(next_level)
def _is_fixpoint(self, theory1: Theory, theory2: Theory) -> bool:
"""检查是否是不动点"""
# 简化:比较公理数量
return len(theory1.axioms) == len(theory2.axioms)
def get_level(self, n: int) -> Optional[Theory]:
"""获取第n层理论"""
if n < len(self.levels):
return self.levels[n]
return None
def compute_entropy_growth(self) -> List[float]:
"""计算熵增曲线"""
entropies = []
for theory in self.levels:
# 简化:使用公理数量作为熵的代理
entropy = len(theory.axioms) + len(theory.theorems)
entropies.append(float(entropy))
return entropies
class TheoryFixpoint:
"""理论不动点的特殊处理"""
@staticmethod
def find_fixpoint(base: Theory, max_iterations: int = 100) -> Optional[Theory]:
"""寻找反射不动点"""
tower = TheoryTower(base)
for i in range(max_iterations):
tower.build_to_level(i + 1)
if len(tower.levels) <= i + 1:
# 已经找到不动点
return tower.levels[-1]
return None
@staticmethod
def verify_fixpoint(theory: Theory) -> bool:
"""验证理论是否是不动点"""
reflector = ReflectionOperator()
reflected = reflector.reflect(theory)
# 比较公理集
return theory.axioms == reflected.axioms
证明谓词
class ProofPredicate:
"""证明谓词的实现"""
def __init__(self, theory: Theory):
self.theory = theory
self.encoder = GödelEncoder(theory.language)
def provable(self, formula: Formula) -> Formula:
"""构造Prov_T(φ)谓词"""
# ∃p: Proof_T(p, φ)
phi_code = self.encoder.encode_formula(formula)
# 创建存在性公式
# 简化实现
proves_symbol = self.theory.language.symbols.get("Proves")
if not proves_symbol:
raise ReflectionError("Proves predicate not in language")
return AtomicFormula(
predicate=proves_symbol,
terms=[VariableTerm("p"), ConstantTerm(str(phi_code.value))]
)
def proof_of(self, proof: Proof, formula: Formula) -> Formula:
"""构造Proof_T(p, φ)谓词"""
p_code = self._encode_proof(proof)
phi_code = self.encoder.encode_formula(formula)
proves_symbol = self.theory.language.symbols["Proves"]
return AtomicFormula(
predicate=proves_symbol,
terms=[ConstantTerm(str(p_code.value)),
ConstantTerm(str(phi_code.value))]
)
def _encode_proof(self, proof: Proof) -> No11Number:
"""编码证明序列"""
# 编码每个证明步骤
step_codes = []
for step in proof.steps:
formula_code = self.encoder.encode_formula(step.formula)
step_codes.append(formula_code.value)
# 组合编码
combined = 0
for code in step_codes:
combined = (combined * 100 + code) % 1000000
return No11Number(combined)
范畴论视角
class ReflectionFunctor(Functor):
"""反射作为函子"""
def __init__(self):
# 理论范畴到自身
theory_cat = Category("Theory")
super().__init__("Reflection", theory_cat, theory_cat)
self.reflection_op = ReflectionOperator()
def setup_mapping(self, theories: List[Theory]):
"""设置函子映射"""
for theory in theories:
# 对象映射
theory_obj = CategoryObject(theory.name, theory)
reflected_theory = self.reflection_op.reflect(theory)
reflected_obj = CategoryObject(reflected_theory.name, reflected_theory)
self.object_map[theory_obj] = reflected_obj
# 态射映射(理论态射)
# 简化:只考虑恒等态射
id_mor = IdentityMorphism(theory_obj)
reflected_id = IdentityMorphism(reflected_obj)
self.morphism_map[id_mor] = reflected_id
class ReflectionMonad:
"""反射作为Monad"""
def __init__(self):
self.functor = ReflectionFunctor()
def unit(self, theory: Theory) -> Morphism:
"""单位态射 η: T → R(T)"""
theory_obj = CategoryObject(theory.name, theory)
reflected_obj = self.functor.map_object(theory_obj)
# 包含映射
def inclusion_map(t):
return t # 理论包含在其反射中
return Morphism(theory_obj, reflected_obj, "unit", inclusion_map)
def multiplication(self, theory: Theory) -> Morphism:
"""乘法 μ: R(R(T)) → R(T)"""
# R(R(T)) → R(T) 的平坦化
pass
算法实现
核心反射算法
def reflect_theory(theory: Theory) -> Theory:
"""
完整的理论反射算法
"""
reflector = ReflectionOperator()
return reflector.reflect(theory)
def build_reflection_tower(base: Theory, height: int) -> TheoryTower:
"""
构建反射塔到指定高度
"""
tower = TheoryTower(base)
tower.build_to_level(height)
return tower
def find_reflection_fixpoint(base: Theory) -> Optional[Theory]:
"""
寻找反射不动点
"""
return TheoryFixpoint.find_fixpoint(base)
证明反射算法
def reflect_proof(theory: Theory, proof: Proof) -> Proof:
"""
反射一个证明
"""
# 在反射理论中构造关于原证明的证明
reflected_theory = reflect_theory(theory)
proof_pred = ProofPredicate(reflected_theory)
# 构造元证明
meta_steps = []
for step in proof.steps:
# 每个步骤都被反射
reflected_step = ProofStep(
formula=proof_pred.proof_of(proof, step.formula),
justification="reflection",
dependencies=[]
)
meta_steps.append(reflected_step)
return Proof(meta_steps)
接口规范
理论反射接口
class TheoryReflectionInterface:
"""理论反射系统的标准接口"""
def create_theory(self, name: str) -> Theory:
"""创建新理论"""
pass
def reflect(self, theory: Theory) -> Theory:
"""反射理论"""
pass
def build_tower(self, base: Theory, height: int) -> TheoryTower:
"""构建理论塔"""
pass
def find_fixpoint(self, base: Theory) -> Optional[Theory]:
"""寻找不动点"""
pass
def encode_in_theory(self, theory: Theory, object: Any) -> Formula:
"""在理论内编码对象"""
pass
def verify_self_reference(self, theory: Theory) -> bool:
"""验证理论的自引用能力"""
pass
验证规范
反射正确性验证
def verify_reflection_correctness(original: Theory, reflected: Theory) -> bool:
"""
验证反射的正确性
"""
# 1. 原理论包含在反射中
if not reflected.includes(original):
return False
# 2. 反射公理的正确性
# 检查每个原公理都有对应的反射
# 3. 证明反射的正确性
# 检查每个原证明都被正确反射
return True
不动点验证
def verify_fixpoint(theory: Theory) -> bool:
"""
验证理论是否是反射不动点
"""
return TheoryFixpoint.verify_fixpoint(theory)
熵增验证
def verify_entropy_increase(tower: TheoryTower) -> bool:
"""
验证理论塔的熵增
"""
entropies = tower.compute_entropy_growth()
# 检查严格递增(除非达到不动点)
for i in range(1, len(entropies)):
if entropies[i] < entropies[i-1]:
return False
if entropies[i] == entropies[i-1]:
# 可能达到不动点
if i < len(tower.levels) - 1:
return False
return True
错误处理规范
所有反射操作必须进行严格的错误检查:
- 编码错误: 对象无法编码为No-11数
- 语言错误: 缺少必要的反射符号
- 循环错误: 自引用导致的无限循环
- 资源错误: 反射超过最大深度
- 一致性错误: 反射导致不一致
性能要求
- 编码操作: O(n log n) 其中n是理论大小
- 反射操作: O(n²) 基本情况
- 不动点查找: O(φⁿ) 指数级
- 理论塔构建: O(h · n²) 其中h是高度
- 熵计算: O(n) 线性复杂度
测试规范
每个反射组件必须通过以下测试:
- 基础测试: 理论创建和编码
- 反射测试: 单次反射的正确性
- 塔测试: 理论塔的构建和属性
- 不动点测试: 不动点的存在性和唯一性
- 范畴测试: 函子和Monad结构
- 熵增测试: 验证熵增原理