C10-4 元数学结构可判定性形式化规范
1. 判定性层次结构
1.1 直接可判定类
class DirectlyDecidable:
"""直接可判定性质(多项式时间)"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def verify_no_11_constraint(self, state: str) -> bool:
"""O(n)时间验证no-11约束"""
return '11' not in state
def compute_entropy(self, state: 'State') -> float:
"""O(n)时间计算熵"""
if not state.binary:
return 0.0
ones = state.binary.count('1')
zeros = state.binary.count('0')
total = ones + zeros
if ones == 0 or zeros == 0:
return 0.0
p1 = ones / total
p0 = zeros / total
return -(p1 * np.log2(p1) + p0 * np.log2(p0)) * total
def compute_recursive_depth(self, state: 'State') -> int:
"""O(n)时间计算递归深度"""
h = self.compute_entropy(state)
return int(np.log(h + 1) / np.log(self.phi))
def phi_distance(self, s1: 'State', s2: 'State') -> float:
"""O(n)时间计算φ-距离"""
distance = 0.0
max_len = max(len(s1.binary), len(s2.binary))
for i in range(max_len):
bit1 = int(s1.binary[i]) if i < len(s1.binary) else 0
bit2 = int(s2.binary[i]) if i < len(s2.binary) else 0
distance += abs(bit1 - bit2) / (self.phi ** (i + 1))
return distance
1.2 轨道可判定类
class OrbitDecidable:
"""轨道性质可判定(指数时间)"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.visited_states = {}
def detect_period(self, initial: 'State') -> Tuple[int, int]:
"""检测轨道周期 O(F_{n+2})"""
self.visited_states.clear()
current = initial
step = 0
while current not in self.visited_states:
self.visited_states[current] = step
current = current.collapse()
step += 1
# 防止无限循环的保护
if step > self.max_steps(initial):
raise RuntimeError("Exceeded maximum steps")
pre_period = self.visited_states[current]
period = step - pre_period
return pre_period, period
def max_steps(self, state: 'State') -> int:
"""最大步数界限"""
n = len(state.binary)
# Fibonacci界限
return self.fibonacci(n + 2)
def is_same_orbit(self, s1: 'State', s2: 'State') -> bool:
"""判断两个状态是否在同一轨道"""
# 获取两个状态的轨道
orbit1 = self.compute_orbit(s1)
orbit2 = self.compute_orbit(s2)
# 检查是否有交集
return bool(orbit1.intersection(orbit2))
def compute_orbit(self, initial: 'State') -> Set['State']:
"""计算完整轨道"""
orbit = set()
current = initial
while current not in orbit:
orbit.add(current)
current = current.collapse()
if len(orbit) > self.max_steps(initial):
break
return orbit
def find_attractor(self, initial: 'State') -> List['State']:
"""找到吸引子(周期轨道)"""
pre_period, period = self.detect_period(initial)
# 前进到周期部分
current = initial
for _ in range(pre_period):
current = current.collapse()
# 收集周期轨道
attractor = []
for _ in range(period):
attractor.append(current)
current = current.collapse()
return attractor
1.3 临界可判定类
class CriticalDecidable:
"""临界深度内可判定"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def critical_depth(self, n: int) -> int:
"""计算临界深度"""
return int(np.log(n) / np.log(self.phi)) + 1
def is_decidable_at_depth(self, property: 'Property', depth: int, n: int) -> bool:
"""判断性质在给定深度是否可判定"""
return depth < self.critical_depth(n)
def bounded_search(self, source: 'State', target: 'State',
max_depth: int) -> Optional[List['State']]:
"""有界深度搜索"""
if max_depth == 0:
return [source] if source == target else None
# BFS搜索
queue = [(source, [source])]
visited = {source}
while queue:
current, path = queue.pop(0)
if len(path) > max_depth:
continue
if current == target:
return path
# 扩展后继
successors = self.get_successors(current)
for next_state in successors:
if next_state not in visited:
visited.add(next_state)
queue.append((next_state, path + [next_state]))
return None
def decide_within_critical(self, property: Callable,
state_space: 'StateSpace') -> Optional[bool]:
"""在临界深度内判定性质"""
n = state_space.max_length
critical = self.critical_depth(n)
# 只检查深度小于临界值的状态
for state in state_space.iterate_by_depth(max_depth=critical):
if not property(state):
return False
return True
2. 判定算法实现
2.1 核心判定器
class DecidabilityChecker:
"""可判定性检查器"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.direct = DirectlyDecidable()
self.orbit = OrbitDecidable()
self.critical = CriticalDecidable()
def classify_property(self, property: 'Property') -> str:
"""分类性质的可判定性"""
# 分析性质的计算需求
if property.is_local():
return "DIRECTLY_DECIDABLE"
elif property.involves_orbit():
return "ORBIT_DECIDABLE"
elif property.depth_bounded():
return "CRITICALLY_DECIDABLE"
else:
return "UNDECIDABLE"
def decide(self, property: 'Property', input_size: int) -> Optional[bool]:
"""主判定函数"""
classification = self.classify_property(property)
if classification == "DIRECTLY_DECIDABLE":
return self.decide_directly(property, input_size)
elif classification == "ORBIT_DECIDABLE":
return self.decide_orbit(property, input_size)
elif classification == "CRITICALLY_DECIDABLE":
return self.decide_critical(property, input_size)
else:
return None # 不可判定
def decide_directly(self, property: 'Property', input_size: int) -> bool:
"""直接判定(多项式时间)"""
# 生成测试用例
test_cases = self.generate_test_cases(input_size, sample_size=100)
for test in test_cases:
result = property.evaluate(test)
if result is False:
return False
# 如果所有测试通过,返回真
return True
def decide_orbit(self, property: 'Property', input_size: int) -> bool:
"""轨道判定(指数时间)"""
# 枚举所有可能的初始状态
max_states = self.fibonacci(input_size + 2)
checked = 0
for state in self.enumerate_states(input_size):
if checked >= max_states:
break
orbit = self.orbit.compute_orbit(state)
if not property.holds_on_orbit(orbit):
return False
checked += 1
return True
def decide_critical(self, property: 'Property', input_size: int) -> Optional[bool]:
"""临界深度判定"""
critical_depth = self.critical.critical_depth(input_size)
# 使用深度限制搜索
for depth in range(critical_depth + 1):
partial_result = property.check_at_depth(depth)
if partial_result is False:
return False
elif partial_result is None:
# 达到不可判定边界
return None
return True
2.2 复杂度分析器
class ComplexityAnalyzer:
"""判定复杂度分析"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def time_complexity(self, property: 'Property', n: int) -> str:
"""分析时间复杂度"""
if property.is_syntactic():
return f"O({n})"
elif property.is_semantic():
if property.depth_bound:
d = property.depth_bound
if d < np.log(n) / np.log(self.phi):
return f"O({n}^{d})"
else:
return f"O(φ^{n})"
else:
return "UNDECIDABLE"
def space_complexity(self, property: 'Property', n: int) -> str:
"""分析空间复杂度"""
if property.requires_full_orbit():
return f"O(F_{n+2})" # Fibonacci界限
elif property.is_local():
return f"O({n})"
else:
return f"O({n}^2)"
def is_tractable(self, property: 'Property', n: int) -> bool:
"""判断是否易处理"""
time = self.time_complexity(property, n)
# 检查是否多项式时间
if "^" not in time or ("^" in time and self.extract_exponent(time) <= 3):
return True
return False
def suggest_algorithm(self, property: 'Property', n: int) -> str:
"""建议使用的算法"""
if self.is_tractable(property, n):
return "EXACT_ALGORITHM"
elif property.allows_approximation():
return "APPROXIMATION_ALGORITHM"
elif property.allows_randomization():
return "RANDOMIZED_ALGORITHM"
else:
return "HEURISTIC_ALGORITHM"
2.3 性质分类器
class PropertyClassifier:
"""性质分类器"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def analyze_property(self, property_expr: str) -> 'PropertyClass':
"""分析性质表达式"""
# 解析逻辑结构
parsed = self.parse_expression(property_expr)
# 检查量词
quantifiers = self.extract_quantifiers(parsed)
# 检查递归深度
max_depth = self.extract_max_depth(parsed)
# 分类
if not quantifiers:
return PropertyClass.QUANTIFIER_FREE
elif all(q == 'exists' for q in quantifiers):
return PropertyClass.EXISTENTIAL
elif all(q == 'forall' for q in quantifiers):
return PropertyClass.UNIVERSAL
elif max_depth is not None:
return PropertyClass.BOUNDED_QUANTIFIER
else:
return PropertyClass.ALTERNATING_QUANTIFIER
def decidability_class(self, prop_class: 'PropertyClass', n: int) -> str:
"""根据性质类别判断可判定性"""
critical_depth = int(np.log(n) / np.log(self.phi))
if prop_class == PropertyClass.QUANTIFIER_FREE:
return "P" # 多项式时间
elif prop_class == PropertyClass.EXISTENTIAL:
return "NP" # 非确定多项式时间
elif prop_class == PropertyClass.UNIVERSAL:
return "coNP" # 补NP
elif prop_class == PropertyClass.BOUNDED_QUANTIFIER:
return "PSPACE" # 多项式空间
else:
return "UNDECIDABLE" # 不可判定
3. 判定界限定理
3.1 临界深度定理
class CriticalDepthTheorem:
"""临界深度定理"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def critical_depth(self, n: int, c: float = 1.0) -> int:
"""计算临界深度 d_critical = c * log_φ(n)"""
return int(c * np.log(n) / np.log(self.phi))
def is_below_critical(self, depth: int, n: int) -> bool:
"""判断是否在临界深度以下"""
return depth < self.critical_depth(n)
def complexity_at_depth(self, depth: int) -> str:
"""给定深度的复杂度类"""
if depth <= 1:
return "P"
elif depth <= 2:
return "NP"
elif depth <= 3:
return "PSPACE"
else:
return "EXPTIME"
def prove_decidability_boundary(self, n: int) -> Dict[str, Any]:
"""证明可判定性边界"""
critical = self.critical_depth(n)
return {
'critical_depth': critical,
'decidable_range': (0, critical),
'undecidable_above': critical,
'state_space_size': self.fibonacci(n + 2),
'search_space_at_critical': self.phi ** critical,
'polynomial_bound': n ** 3,
'exponential_threshold': critical
}
3.2 不可判定性证明
class UndecidabilityProof:
"""不可判定性证明"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def encode_turing_machine(self, tm: 'TuringMachine') -> 'State':
"""将图灵机编码为高深度状态"""
# 编码转移函数
transitions = self.encode_transitions(tm.delta)
# 编码为满足no-11约束的二进制串
encoding = self.to_no_11_encoding(transitions)
# 确保深度足够高
depth = self.compute_depth(encoding)
if depth < self.critical_depth(len(encoding)):
encoding = self.increase_depth(encoding)
return State(encoding)
def reduce_halting_problem(self, property: 'Property') -> bool:
"""将停机问题归约到性质判定"""
def halting_property(state: 'State') -> bool:
# 解码为图灵机
tm = self.decode_turing_machine(state)
# 模拟有限步
steps = self.phi ** state.recursive_depth()
# 检查是否停机
return tm.halts_within(steps)
# 如果可以判定此性质,则可以解决停机问题
# 但停机问题不可判定,因此性质也不可判定
return property.equivalent_to(halting_property)
def construct_undecidable_property(self) -> 'Property':
"""构造不可判定性质"""
def undecidable_prop(state: 'State') -> Optional[bool]:
# 对于深度超过临界值的状态
if state.recursive_depth() >= self.critical_depth(len(state.binary)):
# 等价于停机问题
return None # 不可判定
else:
# 在临界深度内可判定
return self.bounded_decision(state)
return Property(undecidable_prop)
4. 实用判定策略
4.1 分层判定器
class LayeredDecider:
"""分层判定策略"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
self.cache = {}
def decide_by_layer(self, property: 'Property', input_size: int) -> Optional[bool]:
"""按层次判定"""
# 第1层:语法检查
if not self.syntax_check(property, input_size):
return False
# 第2层:局部性质
if property.is_local():
return self.local_decision(property, input_size)
# 第3层:有界深度
depth = property.max_depth()
if depth and depth < self.critical_depth(input_size):
return self.bounded_decision(property, input_size, depth)
# 第4层:启发式
return self.heuristic_decision(property, input_size)
def incremental_decision(self, property: 'Property',
initial_size: int, target_size: int) -> Optional[bool]:
"""增量判定"""
# 从小规模开始
for size in range(initial_size, target_size + 1):
result = self.decide_by_layer(property, size)
if result is False:
return False # 找到反例
elif result is None:
# 达到不可判定界限
return self.extrapolate(size, target_size)
return True
def cached_decision(self, property: 'Property', state: 'State') -> Optional[bool]:
"""带缓存的判定"""
key = (property.id, state.hash())
if key in self.cache:
return self.cache[key]
result = self.compute_decision(property, state)
self.cache[key] = result
return result
4.2 概率判定器
class ProbabilisticDecider:
"""概率判定策略"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def monte_carlo_decision(self, property: 'Property',
input_size: int, samples: int = 1000) -> Tuple[float, float]:
"""蒙特卡洛判定"""
positive = 0
for _ in range(samples):
# 随机采样
state = self.random_state(input_size)
if property.evaluate(state):
positive += 1
# 计算概率和置信区间
p = positive / samples
confidence = 1.96 * np.sqrt(p * (1 - p) / samples)
return p, confidence
def las_vegas_search(self, target_property: 'Property',
input_size: int, timeout: int) -> Optional['State']:
"""Las Vegas搜索"""
start_time = time.time()
while time.time() - start_time < timeout:
# 随机生成候选
candidate = self.random_state(input_size)
# 验证性质
if target_property.evaluate(candidate):
return candidate
return None # 超时未找到
5. 判定复杂度界限
5.1 复杂度类层次
class ComplexityHierarchy:
"""复杂度类层次"""
def __init__(self):
self.phi = (1 + np.sqrt(5)) / 2
def define_classes(self) -> Dict[str, 'ComplexityClass']:
"""定义φ-复杂度类"""
return {
'P_φ': ComplexityClass(
name='P_φ',
time_bound=lambda n: n ** 3,
decidable=True
),
'NP_φ': ComplexityClass(
name='NP_φ',
time_bound=lambda n: self.phi ** (np.log(n)),
verifier_time=lambda n: n ** 2,
decidable=True
),
'PSPACE_φ': ComplexityClass(
name='PSPACE_φ',
space_bound=lambda n: n ** 2,
decidable=True
),
'EXP_φ': ComplexityClass(
name='EXP_φ',
time_bound=lambda n: self.phi ** n,
decidable=True
),
'UNDEC_φ': ComplexityClass(
name='UNDEC_φ',
decidable=False
)
}
def classify_problem(self, problem: 'Problem') -> str:
"""分类问题的复杂度"""
if problem.has_polynomial_algorithm():
return 'P_φ'
elif problem.has_polynomial_verifier():
return 'NP_φ'
elif problem.has_polynomial_space_algorithm():
return 'PSPACE_φ'
elif problem.decidable:
return 'EXP_φ'
else:
return 'UNDEC_φ'
6. 验证函数
6.1 可判定性测试
def test_decidability_hierarchy() -> Dict[str, bool]:
"""测试可判定性层次"""
results = {}
# 测试直接可判定性质
direct = DirectlyDecidable()
results['no_11_constraint'] = direct.verify_no_11_constraint("1010")
results['entropy_computation'] = direct.compute_entropy(State("1010")) > 0
# 测试轨道可判定性质
orbit = OrbitDecidable()
pre, period = orbit.detect_period(State("1"))
results['period_detection'] = period > 0
# 测试临界可判定性质
critical = CriticalDecidable()
results['critical_depth'] = critical.critical_depth(100) == 3
# 测试不可判定边界
undec = UndecidabilityProof()
prop = undec.construct_undecidable_property()
results['undecidability'] = prop.decidable is False
return results
6.2 算法正确性验证
def verify_decision_algorithms() -> bool:
"""验证判定算法的正确性"""
checker = DecidabilityChecker()
# 测试用例
test_cases = [
# (property, input_size, expected_decidable)
(LocalProperty(), 10, True),
(OrbitProperty(), 20, True),
(DeepProperty(depth=10), 5, False),
]
for prop, size, expected in test_cases:
result = checker.decide(prop, size)
if (result is not None) != expected:
return False
return True
7. 关键常数
# 基础常数
PHI = (1 + np.sqrt(5)) / 2 # 黄金分割率
# 判定性参数
CRITICAL_DEPTH_FACTOR = 1.0 # 临界深度系数
POLYNOMIAL_DEGREE_BOUND = 3 # 多项式度数界限
EXPONENTIAL_BASE = PHI # 指数基数
# 算法参数
MAX_CACHE_SIZE = 10000 # 缓存大小限制
MONTE_CARLO_SAMPLES = 1000 # 蒙特卡洛采样数
TIMEOUT_SECONDS = 60 # 超时限制
# 复杂度界限
P_TIME_BOUND = lambda n: n ** 3
NP_TIME_BOUND = lambda n: PHI ** (np.log(n) / np.log(PHI))
PSPACE_BOUND = lambda n: n ** 2
EXP_TIME_BOUND = lambda n: PHI ** n
8. 错误处理
class DecidabilityError(Exception):
"""可判定性错误基类"""
class UndecidableError(DecidabilityError):
"""不可判定错误"""
class TimeoutError(DecidabilityError):
"""判定超时错误"""
class DepthExceededError(DecidabilityError):
"""超过深度限制错误"""
class StateSpaceExhaustedError(DecidabilityError):
"""状态空间耗尽错误"""