C10-1 元数学结构形式化规范
模块依赖
from typing import List, Set, Dict, Tuple, Optional, Union, Callable
from dataclasses import dataclass, field
from abc import ABC, abstractmethod
from enum import Enum
import hashlib
from no11_number_system import No11Number
from test_C9_1 import SelfReferentialArithmetic
from test_C9_2 import RecursiveNumberTheory
from test_C9_3 import SelfReferentialGroup, SelfReferentialRing, SelfReferentialField
核心数据结构
形式语言定义
class SymbolType(Enum):
"""符号类型枚举"""
VARIABLE = "variable"
CONSTANT = "constant"
FUNCTION = "function"
RELATION = "relation"
LOGICAL = "logical"
AUXILIARY = "auxiliary"
@dataclass(frozen=True)
class Symbol:
"""形式符号"""
name: str
type: SymbolType
arity: int = 0 # 函数或关系的元数
def encode(self) -> No11Number:
"""符号的No-11编码"""
# 使用符号的哈希值生成唯一编码
hash_val = hash((self.name, self.type, self.arity))
return No11Number(abs(hash_val) % 1000) # 限制大小
class Term(ABC):
"""项的抽象基类"""
@abstractmethod
def free_variables(self) -> Set[Symbol]:
"""返回自由变量集合"""
pass
@abstractmethod
def substitute(self, var: Symbol, replacement: 'Term') -> 'Term':
"""变量替换"""
pass
@abstractmethod
def encode(self) -> No11Number:
"""项的No-11编码"""
pass
@dataclass(frozen=True)
class VariableTerm(Term):
"""变量项"""
symbol: Symbol
def free_variables(self) -> Set[Symbol]:
return {self.symbol}
def substitute(self, var: Symbol, replacement: Term) -> Term:
if self.symbol == var:
return replacement
return self
def encode(self) -> No11Number:
return self.symbol.encode()
@dataclass(frozen=True)
class ConstantTerm(Term):
"""常量项"""
symbol: Symbol
def free_variables(self) -> Set[Symbol]:
return set()
def substitute(self, var: Symbol, replacement: Term) -> Term:
return self
def encode(self) -> No11Number:
return self.symbol.encode()
@dataclass(frozen=True)
class FunctionTerm(Term):
"""函数项"""
function: Symbol
arguments: Tuple[Term, ...]
def __post_init__(self):
if len(self.arguments) != self.function.arity:
raise ValueError(f"Function {self.function.name} expects {self.function.arity} arguments")
def free_variables(self) -> Set[Symbol]:
return set().union(*(arg.free_variables() for arg in self.arguments))
def substitute(self, var: Symbol, replacement: Term) -> Term:
new_args = tuple(arg.substitute(var, replacement) for arg in self.arguments)
return FunctionTerm(self.function, new_args)
def encode(self) -> No11Number:
# 编码为: [函数符号编码, 参数1编码, 参数2编码, ...]
func_code = self.function.encode()
arg_codes = [arg.encode() for arg in self.arguments]
# 组合编码(简化实现)
combined = func_code.value
for arg_code in arg_codes:
combined = combined * 1000 + arg_code.value
return No11Number(combined)
class Formula(ABC):
"""公式的抽象基类"""
@abstractmethod
def free_variables(self) -> Set[Symbol]:
"""返回自由变量集合"""
pass
@abstractmethod
def substitute(self, var: Symbol, replacement: Term) -> 'Formula':
"""变量替换"""
pass
@abstractmethod
def encode(self) -> No11Number:
"""公式的No-11编码"""
pass
@abstractmethod
def is_well_formed(self) -> bool:
"""检查是否是良构公式"""
pass
@dataclass(frozen=True)
class AtomicFormula(Formula):
"""原子公式"""
relation: Symbol
arguments: Tuple[Term, ...]
def free_variables(self) -> Set[Symbol]:
return set().union(*(arg.free_variables() for arg in self.arguments))
def substitute(self, var: Symbol, replacement: Term) -> Formula:
new_args = tuple(arg.substitute(var, replacement) for arg in self.arguments)
return AtomicFormula(self.relation, new_args)
def encode(self) -> No11Number:
rel_code = self.relation.encode()
arg_codes = [arg.encode() for arg in self.arguments]
combined = rel_code.value
for arg_code in arg_codes:
combined = combined * 1000 + arg_code.value
return No11Number(combined)
def is_well_formed(self) -> bool:
return len(self.arguments) == self.relation.arity
@dataclass(frozen=True)
class NegationFormula(Formula):
"""否定公式"""
formula: Formula
def free_variables(self) -> Set[Symbol]:
return self.formula.free_variables()
def substitute(self, var: Symbol, replacement: Term) -> Formula:
return NegationFormula(self.formula.substitute(var, replacement))
def encode(self) -> No11Number:
# 否定编码为: 1 + 子公式编码
return No11Number(1 + self.formula.encode().value)
def is_well_formed(self) -> bool:
return self.formula.is_well_formed()
@dataclass(frozen=True)
class BinaryFormula(Formula):
"""二元逻辑公式"""
left: Formula
operator: str # "∧", "∨", "→", "↔"
right: Formula
def free_variables(self) -> Set[Symbol]:
return self.left.free_variables() | self.right.free_variables()
def substitute(self, var: Symbol, replacement: Term) -> Formula:
return BinaryFormula(
self.left.substitute(var, replacement),
self.operator,
self.right.substitute(var, replacement)
)
def encode(self) -> No11Number:
op_code = {"∧": 2, "∨": 3, "→": 4, "↔": 5}[self.operator]
left_code = self.left.encode().value
right_code = self.right.encode().value
return No11Number(op_code * 1000000 + left_code * 1000 + right_code)
def is_well_formed(self) -> bool:
return self.left.is_well_formed() and self.right.is_well_formed()
@dataclass(frozen=True)
class QuantifiedFormula(Formula):
"""量化公式"""
quantifier: str # "∀" or "∃"
variable: Symbol
formula: Formula
def free_variables(self) -> Set[Symbol]:
return self.formula.free_variables() - {self.variable}
def substitute(self, var: Symbol, replacement: Term) -> Formula:
if var == self.variable:
return self # 约束变量不能替换
if self.variable in replacement.free_variables():
# 需要重命名以避免变量捕获
new_var = self._fresh_variable()
renamed_formula = self.formula.substitute(self.variable, VariableTerm(new_var))
return QuantifiedFormula(self.quantifier, new_var,
renamed_formula.substitute(var, replacement))
return QuantifiedFormula(self.quantifier, self.variable,
self.formula.substitute(var, replacement))
def encode(self) -> No11Number:
q_code = 6 if self.quantifier == "∀" else 7
var_code = self.variable.encode().value
formula_code = self.formula.encode().value
return No11Number(q_code * 1000000 + var_code * 1000 + formula_code)
def is_well_formed(self) -> bool:
return (self.variable.type == SymbolType.VARIABLE and
self.formula.is_well_formed())
def _fresh_variable(self) -> Symbol:
"""生成新的变量符号"""
i = 0
while True:
new_var = Symbol(f"x_{i}", SymbolType.VARIABLE)
if new_var not in self.formula.free_variables():
return new_var
i += 1
形式系统定义
@dataclass
class Axiom:
"""公理"""
name: str
formula: Formula
def verify_well_formed(self) -> bool:
"""验证公理是良构公式"""
return self.formula.is_well_formed()
@dataclass
class InferenceRule:
"""推理规则"""
name: str
premises_pattern: List[Formula] # 前提模式
conclusion_pattern: Formula # 结论模式
validity_check: Callable[[List[Formula], Formula], bool]
def apply(self, premises: List[Formula]) -> Optional[Formula]:
"""应用推理规则"""
if len(premises) != len(self.premises_pattern):
return None
# 尝试模式匹配和实例化
substitution = self._match_premises(premises)
if substitution is None:
return None
# 生成结论
conclusion = self._instantiate_conclusion(substitution)
# 验证有效性
if self.validity_check(premises, conclusion):
return conclusion
return None
def _match_premises(self, premises: List[Formula]) -> Optional[Dict[Symbol, Term]]:
"""模式匹配"""
# 简化实现:这里需要完整的模式匹配算法
return {}
def _instantiate_conclusion(self, substitution: Dict[Symbol, Term]) -> Formula:
"""实例化结论"""
result = self.conclusion_pattern
for var, term in substitution.items():
result = result.substitute(var, term)
return result
class FormalSystem:
"""形式系统"""
def __init__(self, name: str = "MetaMathSystem"):
self.name = name
self.symbols: Dict[str, Symbol] = {}
self.axioms: Dict[str, Axiom] = {}
self.rules: Dict[str, InferenceRule] = {}
self.theorems: Set[Formula] = set()
self._initialize_basic_elements()
def _initialize_basic_elements(self):
"""初始化基本元素"""
# 基本符号
self.add_symbol(Symbol("0", SymbolType.CONSTANT))
self.add_symbol(Symbol("1", SymbolType.CONSTANT))
self.add_symbol(Symbol("=", SymbolType.RELATION, 2))
self.add_symbol(Symbol("<", SymbolType.RELATION, 2))
self.add_symbol(Symbol("+", SymbolType.FUNCTION, 2))
self.add_symbol(Symbol("*", SymbolType.FUNCTION, 2))
self.add_symbol(Symbol("collapse", SymbolType.FUNCTION, 1))
# 基本推理规则
self._add_modus_ponens()
self._add_generalization()
def add_symbol(self, symbol: Symbol):
"""添加符号"""
self.symbols[symbol.name] = symbol
def add_axiom(self, axiom: Axiom):
"""添加公理"""
if axiom.verify_well_formed():
self.axioms[axiom.name] = axiom
self.theorems.add(axiom.formula)
else:
raise ValueError(f"Axiom {axiom.name} is not well-formed")
def add_rule(self, rule: InferenceRule):
"""添加推理规则"""
self.rules[rule.name] = rule
def _add_modus_ponens(self):
"""添加分离规则"""
def mp_check(premises: List[Formula], conclusion: Formula) -> bool:
if len(premises) != 2:
return False
# 检查是否形如 [A, A→B] ⊢ B
if isinstance(premises[1], BinaryFormula) and premises[1].operator == "→":
return premises[1].left == premises[0] and premises[1].right == conclusion
return False
self.add_rule(InferenceRule(
"modus_ponens",
[Formula(), BinaryFormula(Formula(), "→", Formula())],
Formula(),
mp_check
))
def _add_generalization(self):
"""添加全称概括规则"""
def gen_check(premises: List[Formula], conclusion: Formula) -> bool:
if len(premises) != 1:
return False
# 检查是否形如 A(x) ⊢ ∀x.A(x)
if isinstance(conclusion, QuantifiedFormula) and conclusion.quantifier == "∀":
return conclusion.formula == premises[0]
return False
self.add_rule(InferenceRule(
"generalization",
[Formula()],
QuantifiedFormula("∀", Symbol("x", SymbolType.VARIABLE), Formula()),
gen_check
))
def is_theorem(self, formula: Formula) -> bool:
"""检查是否是定理"""
return formula in self.theorems
def encode_self(self) -> No11Number:
"""Gödel编码整个形式系统"""
# 编码所有组成部分
symbol_codes = [s.encode().value for s in self.symbols.values()]
axiom_codes = [a.formula.encode().value for a in self.axioms.values()]
# 组合编码(简化版)
combined = 0
for code in symbol_codes + axiom_codes:
combined = combined * 10000 + code
return No11Number(combined % 1000000) # 限制大小
证明系统定义
@dataclass
class ProofStep:
"""证明步骤"""
formula: Formula
justification: Union[str, Tuple[str, List[int]]] # "axiom:name" 或 ("rule:name", [前提索引])
def is_valid(self, system: FormalSystem, previous_steps: List['ProofStep']) -> bool:
"""验证步骤的有效性"""
if isinstance(self.justification, str) and self.justification.startswith("axiom:"):
axiom_name = self.justification[6:]
return (axiom_name in system.axioms and
system.axioms[axiom_name].formula == self.formula)
elif isinstance(self.justification, tuple):
rule_name = self.justification[0][5:] # 去掉"rule:"前缀
premise_indices = self.justification[1]
if rule_name not in system.rules:
return False
rule = system.rules[rule_name]
premises = [previous_steps[i].formula for i in premise_indices]
result = rule.apply(premises)
return result is not None and result == self.formula
return False
class Proof:
"""形式证明"""
def __init__(self, goal: Formula):
self.goal = goal
self.steps: List[ProofStep] = []
def add_step(self, step: ProofStep):
"""添加证明步骤"""
self.steps.append(step)
def verify(self, system: FormalSystem) -> bool:
"""验证证明的有效性"""
for i, step in enumerate(self.steps):
if not step.is_valid(system, self.steps[:i]):
return False
# 检查最后一步是否是目标
return len(self.steps) > 0 and self.steps[-1].formula == self.goal
def encode(self) -> No11Number:
"""证明的Gödel编码"""
step_codes = [step.formula.encode().value for step in self.steps]
combined = 0
for code in step_codes:
combined = combined * 10000 + code
return No11Number(combined % 1000000)
def collapse(self) -> 'Proof':
"""证明的collapse操作:移除冗余步骤"""
# 找出被使用的步骤
used_indices = {len(self.steps) - 1} # 最后一步总是需要的
changed = True
while changed:
changed = False
for i, step in enumerate(self.steps):
if i in used_indices and isinstance(step.justification, tuple):
for premise_idx in step.justification[1]:
if premise_idx not in used_indices:
used_indices.add(premise_idx)
changed = True
# 构造新证明
collapsed = Proof(self.goal)
index_map = {}
for i, step in enumerate(self.steps):
if i in used_indices:
new_index = len(collapsed.steps)
index_map[i] = new_index
# 调整引用
if isinstance(step.justification, tuple):
rule_name, premise_indices = step.justification
new_indices = [index_map[idx] for idx in premise_indices]
new_step = ProofStep(step.formula, (rule_name, new_indices))
else:
new_step = step
collapsed.add_step(new_step)
return collapsed
def is_self_verifying(self) -> bool:
"""检查证明是否自验证"""
# 证明包含对自身有效性的证明
verification_formula = self._construct_verification_formula()
for step in self.steps:
if step.formula == verification_formula:
return True
return False
def _construct_verification_formula(self) -> Formula:
"""构造验证公式"""
# 简化实现:返回一个表示"此证明有效"的公式
return AtomicFormula(
Symbol("Valid", SymbolType.RELATION, 1),
(ConstantTerm(Symbol(f"proof_{id(self)}", SymbolType.CONSTANT)),)
)
class ProofSearcher:
"""证明搜索器"""
def __init__(self, system: FormalSystem, max_depth: int = 10):
self.system = system
self.max_depth = max_depth
def search(self, goal: Formula) -> Optional[Proof]:
"""搜索证明"""
# 如果目标已经是定理,直接返回
if self.system.is_theorem(goal):
proof = Proof(goal)
for axiom_name, axiom in self.system.axioms.items():
if axiom.formula == goal:
proof.add_step(ProofStep(goal, f"axiom:{axiom_name}"))
return proof
# 深度优先搜索
return self._dfs_search(goal, 0, set())
def _dfs_search(self, goal: Formula, depth: int,
visited: Set[Formula]) -> Optional[Proof]:
"""深度优先搜索证明"""
if depth > self.max_depth or goal in visited:
return None
visited.add(goal)
# 尝试每个推理规则
for rule_name, rule in self.system.rules.items():
# 尝试反向应用规则
premises = self._find_premises_for_conclusion(rule, goal)
if premises is not None:
# 递归证明每个前提
premise_proofs = []
for premise in premises:
sub_proof = self._dfs_search(premise, depth + 1, visited.copy())
if sub_proof is None:
break
premise_proofs.append(sub_proof)
if len(premise_proofs) == len(premises):
# 构造完整证明
proof = Proof(goal)
# 添加所有前提的证明步骤
premise_indices = []
for sub_proof in premise_proofs:
for step in sub_proof.steps:
proof.add_step(step)
premise_indices.append(len(proof.steps) - 1)
# 添加最终步骤
proof.add_step(ProofStep(goal, (f"rule:{rule_name}", premise_indices)))
return proof
return None
def _find_premises_for_conclusion(self, rule: InferenceRule,
conclusion: Formula) -> Optional[List[Formula]]:
"""寻找能推出结论的前提"""
# 简化实现:需要完整的反向推理算法
return None
Gödel编码系统
class GödelEncoder:
"""Gödel编码器"""
def __init__(self):
self.symbol_map: Dict[str, int] = {}
self.reverse_map: Dict[int, str] = {}
self._initialize_basic_encoding()
def _initialize_basic_encoding(self):
"""初始化基本符号编码"""
basic_symbols = [
"0", "1", "=", "<", "+", "*", "collapse",
"¬", "∧", "∨", "→", "↔", "∀", "∃",
"(", ")", ",", "x", "y", "z"
]
for i, symbol in enumerate(basic_symbols):
self.symbol_map[symbol] = i + 1
self.reverse_map[i + 1] = symbol
def encode_symbol(self, symbol: Symbol) -> No11Number:
"""编码单个符号"""
if symbol.name in self.symbol_map:
return No11Number(self.symbol_map[symbol.name])
else:
# 动态分配新编码
new_code = len(self.symbol_map) + 1
self.symbol_map[symbol.name] = new_code
self.reverse_map[new_code] = symbol.name
return No11Number(new_code)
def encode_formula(self, formula: Formula) -> No11Number:
"""编码公式"""
return formula.encode()
def encode_proof(self, proof: Proof) -> No11Number:
"""编码证明"""
return proof.encode()
def encode_system(self, system: FormalSystem) -> No11Number:
"""编码整个形式系统"""
return system.encode_self()
def diagonal_lemma(self, system: FormalSystem,
property_formula: Formula) -> Formula:
"""对角化引理:构造自引用公式"""
# 构造表示"公式x满足性质P"的公式
x = Symbol("x", SymbolType.VARIABLE)
# 构造"∃y(y是x的编码 ∧ P(y))"
y = Symbol("y", SymbolType.VARIABLE)
encoding_relation = AtomicFormula(
Symbol("encodes", SymbolType.RELATION, 2),
(VariableTerm(y), VariableTerm(x))
)
# 应用性质到编码
property_applied = property_formula.substitute(x, VariableTerm(y))
# 构造存在量化
exists_formula = QuantifiedFormula(
"∃", y,
BinaryFormula(encoding_relation, "∧", property_applied)
)
# 使用不动点组合子构造自引用
# G ≡ ∃y(y encodes G ∧ P(y))
return self._fixed_point_combinator(exists_formula)
def _fixed_point_combinator(self, formula: Formula) -> Formula:
"""不动点组合子"""
# 简化实现:实际需要更复杂的构造
return formula
def construct_gödel_sentence(self, system: FormalSystem) -> Formula:
"""构造Gödel句子:我不可证明"""
# 构造"x是可证明的"性质
x = Symbol("x", SymbolType.VARIABLE)
provable = AtomicFormula(
Symbol("Provable", SymbolType.RELATION, 1),
(VariableTerm(x),)
)
# 否定
not_provable = NegationFormula(provable)
# 应用对角化引理
return self.diagonal_lemma(system, not_provable)
模型论实现
@dataclass
class Interpretation:
"""解释函数"""
domain: Set[No11Number]
constant_interp: Dict[Symbol, No11Number]
function_interp: Dict[Symbol, Callable]
relation_interp: Dict[Symbol, Set[Tuple[No11Number, ...]]]
class Model:
"""形式系统的模型"""
def __init__(self, domain: Set[No11Number], interpretation: Interpretation):
self.domain = domain
self.interpretation = interpretation
def evaluate_term(self, term: Term, assignment: Dict[Symbol, No11Number]) -> No11Number:
"""在赋值下计算项的值"""
if isinstance(term, VariableTerm):
return assignment.get(term.symbol, No11Number(0))
elif isinstance(term, ConstantTerm):
return self.interpretation.constant_interp.get(term.symbol, No11Number(0))
elif isinstance(term, FunctionTerm):
func = self.interpretation.function_interp.get(term.function)
if func is None:
raise ValueError(f"Function {term.function.name} not interpreted")
args = [self.evaluate_term(arg, assignment) for arg in term.arguments]
return func(*args)
else:
raise ValueError(f"Unknown term type: {type(term)}")
def satisfies(self, formula: Formula, assignment: Dict[Symbol, No11Number]) -> bool:
"""检查公式在赋值下是否满足"""
if isinstance(formula, AtomicFormula):
relation = self.interpretation.relation_interp.get(formula.relation, set())
args = tuple(self.evaluate_term(arg, assignment) for arg in formula.arguments)
return args in relation
elif isinstance(formula, NegationFormula):
return not self.satisfies(formula.formula, assignment)
elif isinstance(formula, BinaryFormula):
left = self.satisfies(formula.left, assignment)
right = self.satisfies(formula.right, assignment)
if formula.operator == "∧":
return left and right
elif formula.operator == "∨":
return left or right
elif formula.operator == "→":
return not left or right
elif formula.operator == "↔":
return left == right
elif isinstance(formula, QuantifiedFormula):
if formula.quantifier == "∀":
return all(self.satisfies(formula.formula,
{**assignment, formula.variable: d})
for d in self.domain)
else: # ∃
return any(self.satisfies(formula.formula,
{**assignment, formula.variable: d})
for d in self.domain)
return False
def is_model_of(self, system: FormalSystem) -> bool:
"""检查是否是系统的模型"""
for axiom in system.axioms.values():
if not self.satisfies(axiom.formula, {}):
return False
return True
def is_self_referential(self) -> bool:
"""检查模型是否自引用"""
# 检查模型的编码是否在论域中
model_encoding = self._encode_self()
return model_encoding in self.domain
def _encode_self(self) -> No11Number:
"""模型的自编码"""
# 简化实现
return No11Number(hash(tuple(self.domain)) % 1000000)
class ModelConstructor:
"""模型构造器"""
def __init__(self, system: FormalSystem):
self.system = system
def construct_standard_model(self) -> Model:
"""构造标准模型"""
# 论域:所有有效的No-11数
domain = {No11Number(i) for i in range(100)}
# 解释函数
constant_interp = {
Symbol("0", SymbolType.CONSTANT): No11Number(0),
Symbol("1", SymbolType.CONSTANT): No11Number(1)
}
function_interp = {
Symbol("+", SymbolType.FUNCTION, 2): lambda x, y: x + y,
Symbol("*", SymbolType.FUNCTION, 2): lambda x, y: x * y,
Symbol("collapse", SymbolType.FUNCTION, 1): lambda x: x # 简化
}
relation_interp = {
Symbol("=", SymbolType.RELATION, 2): {(x, x) for x in domain},
Symbol("<", SymbolType.RELATION, 2): {(x, y) for x in domain for y in domain if x < y}
}
interpretation = Interpretation(domain, constant_interp,
function_interp, relation_interp)
return Model(domain, interpretation)
def construct_self_model(self) -> Model:
"""构造包含系统自身的模型"""
standard = self.construct_standard_model()
# 添加系统的编码到论域
system_encoding = self.system.encode_self()
extended_domain = standard.domain | {system_encoding}
# 扩展解释以包含元语言谓词
extended_interp = Interpretation(
extended_domain,
standard.interpretation.constant_interp,
standard.interpretation.function_interp,
standard.interpretation.relation_interp
)
# 添加"是定理"关系
theorem_relation = {
(formula.encode(),)
for formula in self.system.theorems
}
extended_interp.relation_interp[Symbol("IsTheorem", SymbolType.RELATION, 1)] = theorem_relation
return Model(extended_domain, extended_interp)
元定理证明器
class MetaTheoremProver:
"""元定理证明器"""
def __init__(self, system: FormalSystem):
self.system = system
self.encoder = GödelEncoder()
def internalize_meta_statement(self, meta_statement: str) -> Formula:
"""将元语言陈述内部化为对象语言公式"""
# 简化实现:实际需要完整的解析器
if meta_statement == "system is consistent":
# "系统一致"内部化为"¬∃x(x是矛盾的证明)"
x = Symbol("x", SymbolType.VARIABLE)
is_proof_of_contradiction = AtomicFormula(
Symbol("ProvesContradiction", SymbolType.RELATION, 1),
(VariableTerm(x),)
)
return NegationFormula(
QuantifiedFormula("∃", x, is_proof_of_contradiction)
)
# 其他元陈述的内部化...
return AtomicFormula(Symbol("True", SymbolType.RELATION, 0), ())
def prove_reflection_principle(self) -> Proof:
"""证明反射原理"""
# 如果系统证明"若系统一致则φ",那么系统证明φ
# 这需要构造一个复杂的证明
pass
def prove_fixed_point_theorem(self) -> Proof:
"""证明不动点定理"""
# 对每个性质P,存在句子G使得G↔P(⌜G⌝)
pass
def prove_incompleteness(self) -> Tuple[Formula, Proof]:
"""证明不完备性"""
# 构造Gödel句子
gödel_sentence = self.encoder.construct_gödel_sentence(self.system)
# 证明:如果系统一致,则Gödel句子不可证明
# 这是一个元定理,需要在元层次证明
return gödel_sentence, None # 简化实现
接口规范
形式系统接口
class MetaMathInterface:
"""元数学系统的标准接口"""
def create_formal_system(self, name: str) -> FormalSystem:
"""创建形式系统"""
pass
def add_axioms(self, system: FormalSystem, axioms: List[Axiom]):
"""批量添加公理"""
pass
def prove_theorem(self, system: FormalSystem, theorem: Formula) -> Optional[Proof]:
"""尝试证明定理"""
pass
def verify_proof(self, system: FormalSystem, proof: Proof) -> bool:
"""验证证明"""
pass
def encode_object(self, obj: Union[Formula, Proof, FormalSystem]) -> No11Number:
"""Gödel编码任意对象"""
pass
def construct_model(self, system: FormalSystem) -> Model:
"""构造系统的模型"""
pass
def check_independence(self, system: FormalSystem, formula: Formula) -> bool:
"""检查公式是否独立于系统"""
pass
验证规范
自指性验证
def verify_self_reference(system: FormalSystem) -> bool:
"""验证系统的自指性质"""
# 1. 系统能编码自身
# 2. 系统能表达关于自身的陈述
# 3. 存在自引用的定理
pass
完备性检查
def check_completeness(system: FormalSystem) -> Tuple[bool, Optional[Formula]]:
"""检查系统的完备性"""
# 寻找既不可证明也不可反驳的公式
pass
一致性验证
def verify_consistency(system: FormalSystem) -> bool:
"""验证系统的一致性"""
# 检查是否能推出矛盾
pass
错误处理规范
所有元数学操作必须进行严格的错误检查:
- 语法错误: 公式必须是良构的
- 类型错误: 符号使用必须符合其类型
- 证明错误: 每个证明步骤必须有效
- 编码错误: Gödel编码必须可逆
- 模型错误: 解释必须满足所有公理
性能要求
- 公式解析: O(n) 其中n是公式长度
- 证明验证: O(m*n) 其中m是步骤数,n是平均公式长度
- 定理搜索: 指数级,但有深度限制
- 模型检查: O(|D|^k) 其中|D|是论域大小,k是量词嵌套深度
测试规范
每个元数学组件必须通过以下测试:
- 语法测试: 公式构造和解析
- 证明测试: 证明的构造和验证
- 编码测试: Gödel编码的双向性
- 模型测试: 模型的构造和验证
- 元定理测试: 关键元定理的证明