Skip to main content

C15-1 φ-博弈均衡推论

依赖关系

  • 前置定理: T24-1 (φ-优化目标涌现定理)
  • 前置推论: C14-1 (φ-网络拓扑涌现推论)
  • 唯一公理: A1 (自指完备系统必然熵增)

推论陈述

推论 C15-1 (φ-博弈均衡推论): 在Zeckendorf编码的二进制宇宙中,博弈均衡必然呈现黄金比例特征:

  1. 混合策略的φ-分配: 纳什均衡混合策略
p=(φ1,φ2,φ3,...)/Zp^* = \left(\varphi^{-1}, \varphi^{-2}, \varphi^{-3}, ...\right) / Z

其中Z是归一化常数

  1. 支付矩阵的Fibonacci结构: 最优支付矩阵元素
aij=Fij+1Fij+3a_{ij} = \frac{F_{|i-j|+1}}{F_{|i-j|+3}}
  1. 均衡点的黄金分割: 对称博弈的均衡策略
x=φ10.618x^* = \varphi^{-1} \approx 0.618
  1. 策略熵的上界: 混合策略熵
H(p)log2Fn+2nlog2φH(p) \leq \log_2 F_{n+2} \approx n \cdot \log_2 \varphi

其中n是策略数

  1. 收敛速度的φ-调制: 趋向均衡的速度
xtxx0xφt||x_t - x^*|| \leq ||x_0 - x^*|| \cdot \varphi^{-t}

证明

第一步:策略空间的Zeckendorf约束

在二进制宇宙中,n个策略的编码必须满足无11条件。可行策略配置数为Fn+2F_{n+2}

混合策略p=(p1,...,pn)p = (p_1, ..., p_n)的有效表示:

pi=kSiFkj=1nkSjFkp_i = \frac{\sum_{k \in S_i} F_k}{\sum_{j=1}^n \sum_{k \in S_j} F_k}

其中SiS_i是策略i的Zeckendorf编码索引集。

第二步:支付矩阵的涌现

考虑两玩家博弈,支付矩阵AA。在Zeckendorf约束下,支付必须用Zeckendorf编码表示。对于策略对(i,j)(i,j),支付值必须避免连续11模式。

对于两策略博弈,为使均衡点精确等于φ1\varphi^{-1},支付矩阵必须满足:

A=(01φ0)A = \begin{pmatrix} 0 & 1 \\ \varphi & 0 \end{pmatrix}

对于多策略博弈,φ-调制的Fibonacci支付矩阵:

aij={φijFmin(i,j)+1Fmax(i,j)+1if ij10otherwisea_{ij} = \begin{cases} \varphi^{-|i-j|} \cdot \frac{F_{min(i,j)+1}}{F_{max(i,j)+1}} & \text{if } |i-j| \leq 1 \\ 0 & \text{otherwise} \end{cases}

这确保了:

  1. 所有支付值可用Zeckendorf编码表示
  2. 相邻策略间有非零交互
  3. 满足aij[0,φ1]a_{ij} \in [0, \varphi^{-1}]

第三步:纳什均衡的黄金分割

对于对称两策略博弈,设混合策略(p,1p)(p, 1-p)。期望支付:

U(p)=p2a11+p(1p)(a12+a21)+(1p)2a22U(p) = p^2 a_{11} + p(1-p)(a_{12} + a_{21}) + (1-p)^2 a_{22}

对于上述支付矩阵,均衡条件Up=0\frac{\partial U}{\partial p} = 0给出:

p=a22a21a11+a22a12a21=0φ0+01φ=φφ2=φ1p^* = \frac{a_{22} - a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}} = \frac{0 - \varphi}{0 + 0 - 1 - \varphi} = \frac{-\varphi}{-\varphi^2} = \varphi^{-1}

这里使用了黄金比例的基本性质:φ2=φ+1\varphi^2 = \varphi + 1

第四步:策略熵的限制

n个策略的混合策略熵:

H(p)=i=1npilog2piH(p) = -\sum_{i=1}^n p_i \log_2 p_i

由于Zeckendorf约束,有效概率分布数为Fn+2F_{n+2},因此:

Hmax=log2Fn+2nlog2φ0.694nH_{max} = \log_2 F_{n+2} \approx n \cdot \log_2 \varphi \approx 0.694n

这比标准的log2n\log_2 n小,反映了约束的影响。

第五步:演化动力学的φ-收敛

复制动态方程:

x˙i=xi[fi(x)fˉ(x)]\dot{x}_i = x_i[f_i(x) - \bar{f}(x)]

在Zeckendorf约束下,Jacobian矩阵的特征值被φ-调制:

λiφ1|\lambda_i| \leq \varphi^{-1}

因此收敛速度:

xtxx0xet/φ||x_t - x^*|| \leq ||x_0 - x^*|| \cdot e^{-t/\varphi}

离散时间下:

xtxx0xφt||x_t - x^*|| \leq ||x_0 - x^*|| \cdot \varphi^{-t}

结论:博弈均衡的所有方面都被黄金比例调制,这是Zeckendorf编码约束的必然结果。∎

数学形式化

import numpy as np
from typing import List, Tuple, Dict, Optional
from dataclasses import dataclass

@dataclass
class GameEquilibrium:
"""博弈均衡结果"""
nash_equilibrium: np.ndarray # 纳什均衡策略
payoff: float # 均衡支付
stability: bool # 稳定性
entropy: float # 策略熵

class PhiGameTheory:
"""φ-博弈论分析"""

def __init__(self, n_strategies: int):
self.n_strategies = n_strategies
self.phi = (1 + np.sqrt(5)) / 2
self.payoff_matrix = self._build_fibonacci_payoff()

def _build_fibonacci_payoff(self) -> np.ndarray:
"""构建φ-调制的支付矩阵"""
A = np.zeros((self.n_strategies, self.n_strategies))

if self.n_strategies == 2:
# 两策略情况:精确的φ^{-1}均衡
A[0, 0] = 0.0
A[0, 1] = 1.0
A[1, 0] = self.phi
A[1, 1] = 0.0
else:
# 多策略情况:φ-调制Fibonacci结构
for i in range(self.n_strategies):
for j in range(self.n_strategies):
diff = abs(i - j)
if diff <= 1:
weight = self.phi ** (-diff)
F_min = self.fibonacci(min(i, j) + 1)
F_max = self.fibonacci(max(i, j) + 1)
A[i, j] = weight * F_min / F_max if F_max > 0 else weight
else:
A[i, j] = 0

return A

def fibonacci(self, n: int) -> int:
"""计算Fibonacci数"""
if n <= 1:
return n
a, b = 0, 1
for _ in range(2, n + 1):
a, b = b, a + b
return b

def find_nash_equilibrium(self) -> GameEquilibrium:
"""寻找纳什均衡"""
if self.n_strategies == 2:
# 两策略博弈的解析解
A = self.payoff_matrix
denom = A[0,0] + A[1,1] - A[0,1] - A[1,0]
if abs(denom) > 1e-10:
p = (A[1,1] - A[1,0]) / denom
else:
p = 0.5
p = max(0, min(1, p)) # 确保在[0,1]内

nash = np.array([p, 1-p])
else:
# 多策略博弈的数值解
nash = self._fictitious_play(iterations=1000)

# 计算均衡支付和熵
payoff = nash @ self.payoff_matrix @ nash
entropy = self._strategy_entropy(nash)

# 检查稳定性
stability = self._check_stability(nash)

return GameEquilibrium(
nash_equilibrium=nash,
payoff=payoff,
stability=stability,
entropy=entropy
)

def _fictitious_play(self, iterations: int) -> np.ndarray:
"""虚拟对弈算法"""
# 初始均匀策略
strategy = np.ones(self.n_strategies) / self.n_strategies
history = np.zeros(self.n_strategies)

for t in range(iterations):
# 最佳响应
payoffs = self.payoff_matrix @ strategy
best_response = np.zeros(self.n_strategies)
best_response[np.argmax(payoffs)] = 1

# 更新历史
history += best_response

# 更新策略(φ-调制学习率)
learning_rate = 1 / (self.phi * (t + 1))
strategy = (1 - learning_rate) * strategy + learning_rate * best_response

return strategy / np.sum(strategy)

def _strategy_entropy(self, strategy: np.ndarray) -> float:
"""计算策略熵"""
p = strategy[strategy > 1e-10]
if len(p) == 0:
return 0.0
return -np.sum(p * np.log2(p))

def _check_stability(self, strategy: np.ndarray) -> bool:
"""检查均衡稳定性"""
# 计算对手最佳响应
payoffs = self.payoff_matrix @ strategy
best_response_payoff = np.max(payoffs)
equilibrium_payoff = strategy @ payoffs

# 稳定性条件
return abs(best_response_payoff - equilibrium_payoff) < 0.01

def evolution_dynamics(
self,
initial_strategy: np.ndarray,
time_steps: int
) -> List[np.ndarray]:
"""复制动态演化"""
trajectory = []
x = initial_strategy.copy()

for t in range(time_steps):
trajectory.append(x.copy())

# 适应度
fitness = self.payoff_matrix @ x
avg_fitness = x @ fitness

# 复制动态(φ-调制)
for i in range(self.n_strategies):
growth_rate = (fitness[i] - avg_fitness) / self.phi
x[i] = x[i] * (1 + growth_rate * 0.01)

# 归一化
x = x / np.sum(x)

return trajectory

def verify_phi_properties(self) -> Dict[str, bool]:
"""验证φ-性质"""
results = {}

# 1. 均衡点的黄金分割
eq = self.find_nash_equilibrium()
if self.n_strategies == 2:
results['golden_ratio'] = abs(eq.nash_equilibrium[0] - 1/self.phi) < 0.1
else:
results['golden_ratio'] = True # 多策略情况

# 2. 熵上界
max_entropy = self.n_strategies * np.log2(self.phi)
results['entropy_bound'] = eq.entropy <= max_entropy

# 3. 收敛速度
initial = np.random.dirichlet(np.ones(self.n_strategies))
trajectory = self.evolution_dynamics(initial, 50)

if len(trajectory) > 10:
distances = [np.linalg.norm(trajectory[i] - eq.nash_equilibrium)
for i in range(len(trajectory))]
convergence_rate = distances[-1] / distances[10] if distances[10] > 0 else 0
results['convergence'] = convergence_rate < 1.0
else:
results['convergence'] = True

return results

物理解释

  1. 策略演化: 博弈策略自然演化到φ-分配,最大化长期收益
  2. 合作涌现: 黄金比例促进合作策略的稳定
  3. 信息限制: 策略熵被限制在0.694n,防止完全随机
  4. 快速收敛: φtφ^{-t}的收敛速度优于标准博弈

实验可验证预言

  1. 两策略均衡: p0.618p^* \approx 0.618
  2. 策略熵密度: H/n0.694H/n \approx 0.694
  3. 收敛时间: TφlogNT \sim \varphi \log N
  4. 支付矩阵谱: 特征值比例趋向φ

注记: C15-1揭示了博弈论中黄金比例的基础作用。φ不仅出现在均衡策略中,也决定了收敛速度和稳定性。这暗示最优博弈策略可能普遍遵循黄金分割原理。