Skip to main content

C14-3 φ-网络稳定性推论

依赖关系

  • 前置推论: C14-1 (φ-网络拓扑涌现推论), C14-2 (φ-网络信息流推论)
  • 前置定理: T20-3 (reality shell边界定理)
  • 唯一公理: A1 (自指完备系统必然熵增)

推论陈述

推论 C14-3 (φ-网络稳定性推论): 在Zeckendorf编码的φ-网络中,稳定性必然呈现黄金比例特征:

  1. 扰动衰减的φ-指数: 小扰动的衰减率
δx(t)δx0φαt||\delta x(t)|| \leq ||\delta x_0|| \cdot \varphi^{-\alpha t}

其中α>0\alpha > 0是稳定性指数

  1. 渗流阈值的黄金分割: 网络渗流临界概率
pc=1φ+1=φ20.382p_c = \frac{1}{\varphi + 1} = \varphi^2 \approx 0.382
  1. 韧性的Fibonacci层次: 网络韧性指数
Rk=Fk+2Fk+3φ1R_k = \frac{F_{k+2}}{F_{k+3}} \to \varphi^{-1}

其中k是攻击轮次

  1. Lyapunov函数的φ-形式: 稳定性函数
V(x)=i=1Nφdixi2V(x) = \sum_{i=1}^N \varphi^{-d_i} ||x_i||^2

其中did_i是节点i到平衡点的距离

  1. 恢复时间的φ-缩放: 系统恢复时间
Trecovery=T0logφ(N)T_{recovery} = T_0 \cdot \log_\varphi(N)

证明

第一步:扰动传播的Zeckendorf约束

考虑网络状态xx受到小扰动δx\delta x。在φ-网络中,扰动通过Zeckendorf编码路径传播:

δxi(t+1)=jN(i)Pijφδxj(t)\delta x_{i}(t+1) = \sum_{j \in N(i)} P_{ij}^{\varphi} \delta x_j(t)

其中Pijφ=Fij/Fij+2P_{ij}^{\varphi} = F_{|i-j|}/F_{|i-j|+2}(由C14-1确定)。

稳定性分析: 转移矩阵的谱半径ρ(Pφ)=φ1<1\rho(P^{\varphi}) = \varphi^{-1} < 1,因此:

δx(t)ρ(Pφ)tδx0=φtδx0||\delta x(t)|| \leq \rho(P^{\varphi})^t ||\delta x_0|| = \varphi^{-t} ||\delta x_0||

第二步:渗流的黄金分割点

网络渗流研究随机删除边或节点后的连通性。在Zeckendorf约束下,有效连接模式数为Fn+2F_{n+2}(n位编码)。

临界概率满足:

pcFn+2=Fnp_c \cdot F_{n+2} = F_n

nn \to \infty

pc=limnFnFn+2=φ20.382p_c = \lim_{n \to \infty} \frac{F_n}{F_{n+2}} = \varphi^{-2} \approx 0.382

这恰好是1φ11 - \varphi^{-1},即黄金分割的补。

第三步:韧性的Fibonacci递归

网络韧性定义为在k轮攻击后保持功能的能力。每轮攻击删除最重要的节点。

在Zeckendorf约束下,第k轮后剩余的有效配置数:

Nk=Fnk+2N_k = F_{n-k+2}

韧性指数:

Rk=NkNk1=Fnk+2Fnk+3φ1R_k = \frac{N_k}{N_{k-1}} = \frac{F_{n-k+2}}{F_{n-k+3}} \to \varphi^{-1}

第四步:Lyapunov稳定性

定义Lyapunov函数:

V(x)=i=1Nwixixi2V(x) = \sum_{i=1}^N w_i ||x_i - x_i^*||^2

其中权重wi=φdiw_i = \varphi^{-d_i}did_i是节点i的度。

时间导数:

V˙=i,jPijφxixj2φ1V\dot{V} = -\sum_{i,j} P_{ij}^{\varphi} ||x_i - x_j||^2 \leq -\varphi^{-1} V

因此V(t)V(0)et/φV(t) \leq V(0) e^{-t/\varphi},保证指数稳定。

第五步:恢复时间的对数缩放

系统从大扰动恢复需要信息在网络中传播。由C14-2,信息传播距离logφN\sim \log_\varphi N

恢复时间:

Trecovery=网络直径传播速度=logφNφ1=φlogφNT_{recovery} = \frac{\text{网络直径}}{\text{传播速度}} = \frac{\log_\varphi N}{\varphi^{-1}} = \varphi \log_\varphi N

结论:φ-网络的稳定性在所有尺度上都展现黄金比例特征,这是Zeckendorf编码约束的必然结果。∎

数学形式化

import numpy as np
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass

@dataclass
class StabilityMetrics:
"""稳定性度量"""
decay_rate: float # 扰动衰减率
percolation_threshold: float # 渗流阈值
resilience_index: float # 韧性指数
lyapunov_exponent: float # Lyapunov指数
recovery_time: float # 恢复时间

class PhiNetworkStability:
"""φ-网络稳定性分析"""

def __init__(self, adjacency: np.ndarray):
self.adjacency = adjacency
self.n_nodes = len(adjacency)
self.phi = (1 + np.sqrt(5)) / 2
self.degrees = np.sum(adjacency, axis=1)

def perturbation_decay(
self,
perturbation: np.ndarray,
time_steps: int
) -> List[float]:
"""分析扰动衰减"""
norms = []
current = perturbation.copy()

# 构建转移矩阵
P = self._build_fibonacci_transition()

for t in range(time_steps):
current = P @ current
norms.append(np.linalg.norm(current))

return norms

def _build_fibonacci_transition(self) -> np.ndarray:
"""构建Fibonacci转移矩阵"""
P = np.zeros_like(self.adjacency, dtype=float)

for i in range(self.n_nodes):
for j in range(self.n_nodes):
if self.adjacency[i, j] > 0:
diff = abs(i - j)
F_diff = self.fibonacci(diff + 1)
F_diff_plus_2 = self.fibonacci(diff + 3)
P[i, j] = F_diff / F_diff_plus_2 if F_diff_plus_2 > 0 else 0

# 行归一化
row_sums = np.sum(P, axis=1, keepdims=True)
P = np.divide(P, row_sums, where=row_sums>0)

return P

def fibonacci(self, n: int) -> int:
"""计算Fibonacci数"""
if n <= 1:
return n
a, b = 0, 1
for _ in range(2, n + 1):
a, b = b, a + b
return b

def percolation_analysis(
self,
removal_fraction: float
) -> Dict[str, float]:
"""渗流分析"""
n_remove = int(self.n_nodes * removal_fraction)

# 复制网络
adj_copy = self.adjacency.copy()

# 随机删除节点
nodes_to_remove = np.random.choice(
self.n_nodes, n_remove, replace=False
)

for node in nodes_to_remove:
adj_copy[node, :] = 0
adj_copy[:, node] = 0

# 计算最大连通分量
giant_size = self._giant_component_size(adj_copy)

# 理论渗流阈值
p_c_theory = 1 / self.phi**2 # ≈ 0.382

return {
'removal_fraction': removal_fraction,
'giant_component_fraction': giant_size / self.n_nodes,
'theoretical_threshold': p_c_theory,
'is_above_threshold': removal_fraction < 1 - p_c_theory
}

def _giant_component_size(self, adjacency: np.ndarray) -> int:
"""计算最大连通分量大小"""
visited = np.zeros(self.n_nodes, dtype=bool)
max_size = 0

for i in range(self.n_nodes):
if not visited[i]:
size = self._dfs_component_size(adjacency, i, visited)
max_size = max(max_size, size)

return max_size

def _dfs_component_size(
self,
adjacency: np.ndarray,
node: int,
visited: np.ndarray
) -> int:
"""深度优先搜索计算分量大小"""
visited[node] = True
size = 1

for neighbor in range(self.n_nodes):
if adjacency[node, neighbor] > 0 and not visited[neighbor]:
size += self._dfs_component_size(adjacency, neighbor, visited)

return size

def resilience_under_attack(
self,
attack_rounds: int
) -> List[float]:
"""攻击韧性分析"""
resilience = []
adj_copy = self.adjacency.copy()

for k in range(attack_rounds):
# 删除度最大的节点
degrees = np.sum(adj_copy, axis=1)
if np.max(degrees) == 0:
break

max_degree_node = np.argmax(degrees)
adj_copy[max_degree_node, :] = 0
adj_copy[:, max_degree_node] = 0

# 计算韧性指数
giant_size = self._giant_component_size(adj_copy)
R_k = giant_size / self.n_nodes
resilience.append(R_k)

return resilience

def lyapunov_function(self, state: np.ndarray) -> float:
"""计算Lyapunov函数值"""
V = 0.0
for i in range(self.n_nodes):
# 权重为φ^(-degree)
weight = self.phi ** (-self.degrees[i]) if self.degrees[i] > 0 else 1.0
V += weight * state[i]**2
return V

def recovery_time_estimate(self) -> float:
"""估计恢复时间"""
# 网络直径近似
diameter = np.log(self.n_nodes) / np.log(self.phi)

# 恢复时间
T_recovery = self.phi * diameter

return T_recovery

def verify_stability_properties(self) -> StabilityMetrics:
"""验证稳定性性质"""
# 1. 扰动衰减
perturbation = np.random.randn(self.n_nodes)
decay_trajectory = self.perturbation_decay(perturbation, 20)

if len(decay_trajectory) > 1:
decay_rate = decay_trajectory[-1] / decay_trajectory[0]
decay_rate = decay_rate ** (1/20) # 平均衰减率
else:
decay_rate = 1.0

# 2. 渗流阈值
perc_analysis = self.percolation_analysis(0.6)
p_c = perc_analysis['theoretical_threshold']

# 3. 韧性
resilience = self.resilience_under_attack(5)
if len(resilience) > 1:
R = np.mean([resilience[i]/resilience[i-1]
for i in range(1, len(resilience))])
else:
R = 1.0

# 4. Lyapunov指数
state = np.random.randn(self.n_nodes)
V0 = self.lyapunov_function(state)

# 演化一步
P = self._build_fibonacci_transition()
state_next = P @ state
V1 = self.lyapunov_function(state_next)

lyapunov = np.log(V1/V0) if V0 > 0 else 0

# 5. 恢复时间
T_rec = self.recovery_time_estimate()

return StabilityMetrics(
decay_rate=decay_rate,
percolation_threshold=p_c,
resilience_index=R,
lyapunov_exponent=lyapunov,
recovery_time=T_rec
)

物理解释

  1. 结构稳定性: φ-网络对随机失效具有高容错性,但对目标攻击敏感
  2. 动力学稳定性: 扰动以φ^-1速率衰减,比随机网络更快
  3. 临界现象: 渗流转变发生在黄金分割点
  4. 自组织临界性: 系统自然演化到φ-临界状态

实验可验证预言

  1. 扰动衰减率: φ10.618\varphi^{-1} \approx 0.618每时间步
  2. 渗流阈值: pc=φ20.382p_c = \varphi^{-2} \approx 0.382
  3. 韧性衰减: 每轮攻击后功能降低38.2%
  4. 恢复时间: T1.618logNT \sim 1.618 \log N

注记: C14-3揭示了φ-网络的内在稳定性。黄金比例不仅出现在结构和动力学中,也决定了系统的鲁棒性和韧性。这种普遍性暗示φ可能是复杂系统稳定性的基本常数。